Substrate recognition in ER-associated degradation mediated by Eps1, a member of the protein disulfide isomerase family

被引:46
作者
Wang, QQ [1 ]
Chang, A [1 ]
机构
[1] Albert Einstein Coll Med, Dept Anat & Struct Biol, Bronx, NY 10461 USA
关键词
endoplasmic reticulum; ER-associated degradation; plasma membrane ATPase; protein disulfide isomerase; unfolded protein response;
D O I
10.1093/emboj/cdg378
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pma1-D378N is a misfolded plasma membrane protein in yeast that is prevented from delivery to the cell surface and targeted instead for ER-associated degradation (ERAD). Degradation of Pma1-D378N is dependent on the ubiquitin ligase Doa10 and the ubiquitin chaperone Cdc48. Recognition of Pma1-D378N by the ERAD pathway is dependent on Eps1, a transmembrane member of the protein disulfide isomerase (PDI) oxidoreductase family. Eps1 has two thioredoxin-like domains containing a CPHC and a CDKC active site. Although Eps1 interaction with wild-type Pma1 was not detected, Eps1 co-immunoprecipitates with Pma1-D378N. Eps1 interaction with Pma1-D378N requires the CPHC motif, although both thioredoxin-like domains appear to cooperate in substrate recognition. In the absence of the native transmembrane domain and cytoplasmic tail of Eps1, degradation of Pma1-D378N is slowed, suggesting that Eps1 facilitates presentation of substrate to membrane-bound components of the degradation machinery. Genetic interactions with other mutants of the ERAD machinery and induction of the unfolded protein response in eps1Delta cells support a general role for Eps1 as a recognition component of the ERAD pathway.
引用
收藏
页码:3792 / 3802
页数:11
相关论文
共 51 条
[1]   Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation [J].
Bays, NW ;
Gardner, RG ;
Seelig, LP ;
Joazeiro, CA ;
Hampton, RY .
NATURE CELL BIOLOGY, 2001, 3 (01) :24-29
[2]   Cdc48-Ufd1-NpI4: Stuck in the middle with Ub [J].
Bays, NW ;
Hampton, RY .
CURRENT BIOLOGY, 2002, 12 (10) :R366-+
[3]   Ubiquitin and the control of protein fate in the secretory and endocytic pathways [J].
Bonifacino, JS ;
Weissman, AM .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :19-57
[4]   De3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins [J].
Bordallo, J ;
Plemper, RK ;
Finger, A ;
Wolf, DH .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (01) :209-222
[5]   Degradation of proteins from the ER of S-cerevisiae requires an intact unfolded protein response pathway [J].
Casagrande, R ;
Stern, P ;
Diehn, M ;
Shamu, C ;
Osario, M ;
Zúñiga, M ;
Brown, PO ;
Ploegh, H .
MOLECULAR CELL, 2000, 5 (04) :729-735
[6]   MATURATION OF THE YEAST PLASMA-MEMBRANE [H+]ATPASE INVOLVES PHOSPHORYLATION DURING INTRACELLULAR-TRANSPORT [J].
CHANG, A ;
SLAYMAN, CW .
JOURNAL OF CELL BIOLOGY, 1991, 115 (02) :289-295
[7]   A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response [J].
Cox, JS ;
Walter, P .
CELL, 1996, 87 (03) :391-404
[8]  
Cross FR, 1997, YEAST, V13, P647, DOI 10.1002/(SICI)1097-0061(19970615)13:7<647::AID-YEA115>3.0.CO
[9]  
2-#
[10]   Disulfide bond isomerization and the assembly of MHC class I-Peptide complexes [J].
Dick, TP ;
Bangia, N ;
Peaper, DR ;
Cresswell, P .
IMMUNITY, 2002, 16 (01) :87-98