Empirical Parameter Identification for a Hybrid Thermal Model of a High-Speed Permanent Magnet Synchronous Machine

被引:40
作者
Grobler, Andries Johannes [1 ]
Holm, Stanley Robert [2 ]
van Schoor, George [3 ]
机构
[1] North West Univ, Sch Elect Elect & Comp Engn, ZA-2520 Potchefstroom, South Africa
[2] CSIR, ZA-0184 Pretoria, South Africa
[3] North West Univ, Unit Energy & Technol Syst, ZA-2520 Potchefstroom, South Africa
关键词
Contact resistance; permanent magnet (PM) machines; surface resistance; thermal analysis; thermal conductivity; thermal factors; thermal resistance; thermal variables measurement; ELECTRICAL MACHINE; CONDUCTIVITY EVALUATION; INDUCTION-MOTOR; STATOR; DESIGN;
D O I
10.1109/TIE.2017.2733499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An accurate thermal model will commonly require empirical parameter identification, specifically for the convection coefficients and interface resistances. A high-speed permanent magnet synchronous machine test platform, equipped with various temperature and power measuring equipment, is used to determine these parameters. Specifically, two tests, a dc injection test and rotational test with no load connected, were performed. The results were compared with a lumped thermal model and the parameters updated until an acceptable match was achieved. There were significant differences in the temperature rise when activating forced air cooling, thus significantly influencing the convection coefficients. Also, a significant difference in the interface resistances showed that in these high-speed machines, doing only the dc injection test will not give accurate interface resistance values. The work is novel through combining systematic empirical parameter identification to determine the convection coefficients and interface resistances for a machine where the end windings are cooled by forced tangential air flow.
引用
收藏
页码:1616 / 1625
页数:10
相关论文
共 33 条
[21]   LUMPED PARAMETER THERMAL-MODEL FOR ELECTRICAL MACHINES OF TEFC DESIGN [J].
MELLOR, PH ;
ROBERTS, D ;
TURNER, DR .
IEE PROCEEDINGS-B ELECTRIC POWER APPLICATIONS, 1991, 138 (05) :205-218
[22]  
Myburgh S., 2010, P 19 INT C EL MACH S, P1, DOI [10.1109/ICELMACH.2010.5607982, DOI 10.1109/ICELMACH.2010.5607982]
[23]  
Polinder H, 2000, IEEE IND APPLIC SOC, P163
[24]  
Pyrhonen J., 2014, Design of Rotating Electrical Machines, V2nd
[25]   Analytical Thermal Model for Fast Stator Winding Temperature Prediction [J].
Sciascera, Claudio ;
Giangrande, Paolo ;
Papini, Luca ;
Gerada, Chris ;
Galea, Michael .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (08) :6116-6126
[26]  
Simpson N., 2016, P 2016 IET 8 INT C P, P1, DOI DOI 10.1049/CP.2016.0129
[27]   Thermal Analysis and Cooling System Design of Dual Mechanical Port Machine for Wind Power Application [J].
Sun, Xikai ;
Cheng, Ming .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (05) :1724-1733
[28]   Conjugate Heat Transfer Analysis of Integrated Brushless Generators for More Electric Engines [J].
Tosetti, Marco ;
Maggiore, Paolo ;
Cavagnino, Andrea ;
Vaschetto, Silvio .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2014, 50 (04) :2467-2475
[29]  
Turner H Cengel Y.A., 2005, FUNDAMENTALS THERMAL
[30]  
van der Geest M, 2015, 2015 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), P1165, DOI 10.1109/IEMDC.2015.7409208