Polychromatic speckle mitigation for improved adaptive-optics system performance

被引:0
作者
Van Zandt, Noah R. [1 ]
Spencer, Mark F. [1 ]
Brennan, Terry J. [2 ]
机构
[1] US Air Force, Res Lab, Directed Energy Directorate, 3550 Aberdeen Ave SE, Albuquerque, NM 87117 USA
[2] Prime Plexus, 650 N Rose Dr,439, Placentia, CA 92870 USA
来源
UNCONVENTIONAL AND INDIRECT IMAGING, IMAGE RECONSTRUCTION, AND WAVEFRONT SENSING 2018 | 2018年 / 10772卷
关键词
adaptive optics; coherence; partial coherence; polychromatic illumination; speckle; turbulence; wavefront sensing; ATMOSPHERIC-TURBULENCE; BEAM PROJECTION; WAVE; PROPAGATION; MODELS;
D O I
10.1117/12.2318954
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Adaptive-optics (AO) systems correct the distortions caused by atmospheric turbulence for imaging and laser-transmission applications. Given an extended, uncooperative object, the AO system must create a reference wave for wavefront measurement. It does so by focusing a laser beam onto the object; therefore, creating a beacon. Unfortunately, the extended size of the beacon after propagation gives rise to speckle, causing noise in the wavefront measurements which degrades the AO system's correction of the turbulence effects. In this paper, we use polychromatic illumination to create the reference wave, which results in an associated reduction in the speckle noise. To quantify the benefits, we use split-step wave-optics simulations with the spectral-slicing method for polychromatic light. We assume that the AO system uses a Shack Hartmann wavefront sensor. Furthermore, we assume that the speckle decorrelates over short periods of time corresponding to reasonable object motions. We consider a range of conditions for the object size (i.e. the object Fresnel number), object motion, and illuminator coherence length. The results show a reduction in the speckle-induced error with polychromatic light, especially when the object is large. This finding indicates that polychromatic illumination can improve the performance of AO systems when the object is both uncooperative and extended.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] SAXO: the extreme adaptive optics system of SPHERE (I) system overview and global laboratory performance
    Sauvage, Jean-Francois
    Fusco, Thierry
    Petit, Cyril
    Costille, Anne
    Mouillet, David
    Beuzit, Jean-Luc
    Dohlen, Kjetil
    Kasper, Markus
    Suarez, Marcos
    Soenke, Christian
    Baruffolo, Andrea
    Salasnich, Bernardo
    Rochat, Sylvain
    Fedrigo, Enrico
    Baudoz, Pierre
    Hugot, Emmanuel
    Sevin, Arnaud
    Perret, Denis
    Wildi, Francois
    Downing, Mark
    Feautrier, Philippe
    Puget, Pascal
    Vigan, Arthur
    O'Neal, Jared
    Girard, Julien
    Mawet, Dimitri
    Schmid, Hans Martin
    Roelfsemaj, Ronald
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2016, 2 (02)
  • [42] Performance evaluation of phase plate and deformable mirror for adaptive optics (AO) system
    Narra, Venkata Suresh
    Vallapureddy, Sreekanth Reddy
    Banyal, Ravinder Kumar
    Budihal, Raghavendra Prasad
    JOURNAL OF OPTICS-INDIA, 2022, 51 (03): : 591 - 604
  • [43] Speckle reconstruction of photometric data observed with adaptive optics
    Puschmann, K. G.
    Sailer, M.
    ASTRONOMY & ASTROPHYSICS, 2006, 454 (03): : 1011 - 1019
  • [44] Modeling satellite-Earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers
    Gruneisen, Mark T.
    Flanagan, Michael B.
    Sickmiller, Brett A.
    OPTICAL ENGINEERING, 2017, 56 (12)
  • [45] Evaluation of an SLR adaptive optics system
    Riepl, S
    Schlüter, W
    Schreiber, U
    LASER RADAR RANGING AND ATMOSPHERIC LIDAR TECHNIQUES II, 1999, 3865 : 90 - 95
  • [46] Bandwidth of adaptive optics system in atmospheric coherent laser communication
    Li, Jiawei
    Zhang, Zhen
    Gao, Jianqiu
    Sun, Jianfeng
    Chen, Weibiao
    OPTICS COMMUNICATIONS, 2016, 359 : 254 - 260
  • [47] Compact Models of Presbyopia Accommodative Errors for Wearable Adaptive-Optics Vision Correction Devices
    Karkhanis, Mohit U.
    Banerjee, Aishwaryadev
    Ghosh, Chayanjit
    Likhite, Rugved
    Pourshaban, Erfan
    Kim, Hanseup
    Meyer, David A.
    Mastrangelo, Carlos H.
    IEEE ACCESS, 2022, 10 : 68857 - 68867
  • [48] Image-plane fringe tracker for adaptive-optics assisted long baseline interferometry
    Ireland, Michael J.
    Defrere, Denis
    Martinache, Frantz
    Monnier, John D.
    Norris, Barnaby
    Tuthill, Peter
    Woillez, Julien
    OPTICAL AND INFRARED INTERFEROMETRY AND IMAGING VI, 2018, 10701
  • [49] The Properties of Outer Retinal Band Three Investigated With Adaptive-Optics Optical Coherence Tomography
    Jonnal, Ravi S.
    Gorczynska, Iwona
    Migacz, Justin V.
    Azimipour, Mehdi
    Zawadzki, Robert J.
    Werner, John S.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (11) : 4559 - 4568
  • [50] Modeling of the SAAO Adaptive Optics System
    Gullapalli, SN
    Abreu, R
    Rappoport, WM
    Zmek, WP
    Pringle, R
    GAS, CHEMICAL, AND ELECTRICAL LASERS AND INTENSE BEAM CONTROL AND APPLICATIONS, 2000, 3931 : 285 - 299