We present a fast, adaptive multiresolution algorithm for applying integral operators with a wide class of radially symmetric kernels in dimensions one, two and three. This algorithm is made efficient by the use of separated representations of the kernel. We discuss operators of the class (-Delta + mu(2) I)(-alpha), where mu >= 0 and 0 < alpha < 3/2, and illustrate the algorithm for the Poisson and Schrodinger equations in dimension three. The same algorithm may be used for all operators with radially symmetric kernels approximated as a weighted sum of Gaussians, making it applicable across multiple fields by reusing a single implementation. This fast algorithm provides controllable accuracy at a reasonable cost, comparable to that of the Fast Multipole Method (FMM). It differs from the FMM by the type of approximation used to represent kernels and has the advantage of being easily extendable to higher dimensions. (C) 2007 Elsevier Inc. All rights reserved.