Nonconvergent bounded trajectories in semilinear heat equations

被引:53
作者
Polacik, P [1 ]
Rybakowski, KP [1 ]
机构
[1] UNIV TRIESTE,DIPARTIMENTO SCI MATEMAT,I-34100 TRIESTE,ITALY
关键词
D O I
10.1006/jdeq.1996.0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:472 / 494
页数:23
相关论文
共 28 条
[1]  
[Anonymous], APPL ANAL
[2]  
[Anonymous], COMMENT MATH U CAROL
[3]  
BABIN AV, 1983, J MATH PURE APPL, V62, P441
[4]   CONVERGENCE IN GENERAL PERIODIC PARABOLIC EQUATIONS IN ONE SPACE DIMENSION [J].
BRUNOVSKY, P ;
POLACIK, P ;
SANDSTEDE, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (03) :209-215
[5]   CONVERGENCE, ASYMPTOTIC PERIODICITY, AND FINITE-POINT BLOW-UP IN ONE-DIMENSIONAL SEMILINEAR HEAT-EQUATIONS [J].
CHEN, XY ;
MATANO, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) :160-190
[6]  
CHEN XY, GRADIENT LIKE STRUCT
[7]   INVARIANT-MANIFOLDS FOR FLOWS IN BANACH-SPACES [J].
CHOW, SN ;
LU, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 74 (02) :285-317
[8]  
COURANT R, 1953, METHODS MATH PHYSICS
[9]  
DANCER EN, 1991, ANN SCUOLA NORM SUP, V43, P455
[10]   CONVERGENCE IN GRADIENT-LIKE SYSTEMS WITH APPLICATIONS TO PDE [J].
HALE, JK ;
RAUGEL, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (01) :63-124