The Use of 'Omics for Diagnosing and Predicting Progression of Chronic Kidney Disease: A Scoping Review

被引:21
作者
Govender, Melanie A. [1 ,2 ,3 ]
Brandenburg, Jean-Tristan [3 ]
Fabian, June [4 ]
Ramsay, Michele [1 ,2 ,3 ]
机构
[1] Univ Witwatersrand, Fac Hlth Sci, Div Human Genet, Natl Hlth Lab Serv, Johannesburg, South Africa
[2] Univ Witwatersrand, Fac Hlth Sci, Sch Pathol, Johannesburg, South Africa
[3] Univ Witwatersrand, Fac Hlth Sci, Sydney Brenner Inst Mol Biosci, Johannesburg, South Africa
[4] Univ Witwatersrand, Fac Hlth Sci, Wits Donald Gordon Med Ctr, Sch Clin Med, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
'omics; biomarkers; early detection; diagnosis; Sub-Saharan Africa; diabetes; chronic kidney disease; hypertension; TAMM-HORSFALL PROTEIN; STAGE RENAL-DISEASE; HYPERTENSIVE PATIENTS; ALBUMINURIA; VALIDATION; ASSOCIATION; CLASSIFIER; BIOMARKERS; UROMODULIN; PROTEOMICS;
D O I
10.3389/fgene.2021.682929
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Globally, chronic kidney disease (CKD) contributes substantial morbidity and mortality. Recently, various 'omics platforms have provided insight into the molecular basis of kidney dysfunction. This scoping review is a synthesis of the current literature on the use of different 'omics platforms to identify biomarkers that could be used to detect early-stage CKD, predict disease progression, and identify pathways leading to CKD. This review includes 123 articles published from January 2007 to May 2021, following a structured selection process. The most common type of 'omic platform was proteomics, appearing in 55 of the studies and two of these included a metabolomics component. Most studies (n = 91) reported on CKD associated with diabetes mellitus. Thirteen studies that provided information on the biomarkers associated with CKD and explored potential pathways involved in CKD are discussed. The biomarkers that are associated with risk or early detection of CKD are SNPs in the MYH9/APOL1 and UMOD genes, the proteomic CKD273 biomarker panel and metabolite pantothenic acid. Pantothenic acid and the CKD273 biomarker panel were also involved in predicting CKD progression. Retinoic acid pathway genes, UMOD, and pantothenic acid provided insight into potential pathways leading to CKD. The biomarkers were mainly used to detect CKD and predict progression in high-income, European ancestry populations, highlighting the need for representative 'omics research in other populations with disparate socio-economic strata, including Africans, since disease etiologies may differ across ethnic groups. To assess the transferability of findings, it is essential to do research in diverse populations.
引用
收藏
页数:12
相关论文
共 65 条
[1]   Metabolomics Approaches for the Diagnosis and Understanding of Kidney Diseases [J].
Abbiss, Hayley ;
Maker, Garth L. ;
Trengove, Robert D. .
METABOLITES, 2019, 9 (02)
[2]  
Alaje Abiodun K., 2016, IOSR J DENT MED SCI, V15, P118, DOI [10.9790/0853-150805118121, DOI 10.9790/0853-150805118121]
[3]   Diabetic Kidney Disease Challenges, Progress, and Possibilities [J].
Alicic, Radica Z. ;
Rooney, Michele T. ;
Tuttle, Katherine R. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2017, 12 (12) :2032-2045
[4]   Multicentric Validation of Proteomic Biomarkers in Urine Specific for Diabetic Nephropathy [J].
Alkhalaf, Alaa ;
Zurbig, Petra ;
Bakker, Stephan J. L. ;
Bilo, Henk J. G. ;
Cerna, Marie ;
Fischer, Christine ;
Fuchs, Sebastian ;
Janssen, Bart ;
Medek, Karel ;
Mischak, Harald ;
Roob, Johannes M. ;
Rossing, Kasper ;
Rossing, Peter ;
Rychlik, Ivan ;
Sourij, Harald ;
Tiran, Beate ;
Winklhofer-Roob, Brigitte M. ;
Navis, Gerjan J. .
PLOS ONE, 2010, 5 (10)
[5]   Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria [J].
Andersen, Sten ;
Mischak, Harald ;
Zuerbig, Petra ;
Parving, Hans-Henrik ;
Rossing, Peter .
BMC NEPHROLOGY, 2010, 11
[6]  
Ashuntantang G, 2017, LANCET GLOB HEALTH, V5, pE408, DOI [10.1016/S2214-109X(17)30057-8, 10.1016/s2214-109x(17)30057-8]
[7]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[8]   Genetic Susceptibility to Chronic Kidney Disease - Some More Pieces for the Heritability Puzzle [J].
Canadas-Garre, Marisa ;
Anderson, Kerry ;
Cappa, Ruaidhri ;
Skelly, Ryan ;
Smyth, Laura Jane ;
McKnight, Amy Jayne ;
Maxwell, Alexander Peter .
FRONTIERS IN GENETICS, 2019, 10
[9]   A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes [J].
Chen, Guanjie ;
Adeyemo, Adebowale A. ;
Zhou, Jie ;
Chen, Yuanxiu ;
Doumatey, Ayo ;
Lashley, Kerrie ;
Huang, Hanxia ;
Amoah, Albert ;
Agyenim-Boateng, Kofi ;
Eghan, Benjamin A., Jr. ;
Okafor, Godfrey ;
Acheampong, Joseph ;
Oli, Johnnie ;
Fasanmade, Olufemi ;
Johnson, Thomas ;
Rotimi, Charles .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2007, 49 (03) :394-400
[10]   The contribution of chronic kidney disease to the global burden of major noncommunicable diseases [J].
Couser, William G. ;
Remuzzi, Giuseppe ;
Mendis, Shanthi ;
Tonelli, Marcello .
KIDNEY INTERNATIONAL, 2011, 80 (12) :1258-1270