A Liapunov type inequality for Sugeno integrals

被引:16
|
作者
Hong, Dug Hun [1 ]
机构
[1] Myongji Univ, Dept Math, Yongin Kyunggido 449728, South Korea
关键词
Fuzzy measure; Sugeno integral; Liapunov type inequality; HARDY-TYPE INEQUALITY; FUZZY;
D O I
10.1016/j.na.2011.07.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Liapunov inequality shows an interesting upper bound for the Lebesgue integral of the product of two functions. This paper proposes a Liapunov type inequality for Sugeno integrals. That is, we show that H-s,H-t,H-r ((s) integral(1)(0) f(x)(s)d mu)(r-t) <= ((s) integral(1)(0) f(x)(t)d mu)(r-s) ((s) integral(1)(0) f(x)(r)d mu)(s-t) holds for some constant H-s,H-t,H-r where 0 < t < s < r, f : [0, 1] -> [0,infinity) is a non-increasing concave function, and mu is the Lebesgue measure on R. We also present two interesting classes of functions for which the classical Liapunov type inequality for Sugeno integrals with H-s,H-t,H-r = 1 holds. Some examples are provided to illustrate the validity of the proposed inequality. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7296 / 7303
页数:8
相关论文
共 50 条
  • [21] A generalization of the Chebyshev type inequalities for Sugeno integrals
    Hamzeh Agahi
    Adel Mohammadpour
    S. Mansour Vaezpour
    Soft Computing, 2012, 16 : 659 - 666
  • [22] Berwald type inequality for Sugeno integral
    Agahi, Hamzeh
    Mesiar, Radko
    Yao Ouyang
    Pap, Endre
    Strboja, Mirjana
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 4100 - 4108
  • [23] General Chebyshev type inequalities for Sugeno integrals
    Mesiar, Radko
    Ouyang, Yao
    FUZZY SETS AND SYSTEMS, 2009, 160 (01) : 58 - 64
  • [24] General Minkowski type inequalities for Sugeno integrals
    Agahi, Hamzeh
    Mesiar, Radko
    Yao Ouyang
    FUZZY SETS AND SYSTEMS, 2010, 161 (05) : 708 - 715
  • [25] A generalization of the Chebyshev type inequalities for Sugeno integrals
    Agahi, Hamzeh
    Mohammadpour, Adel
    Vaezpour, S. Mansour
    SOFT COMPUTING, 2012, 16 (04) : 659 - 666
  • [26] On Chebyshev type inequalities for generalized Sugeno integrals
    Kaluszka, Marek
    Okolewski, Andrzej
    Boczek, Michal
    FUZZY SETS AND SYSTEMS, 2014, 244 : 51 - 62
  • [27] On the Jensen type inequality for generalized Sugeno integral
    Kaluszka, Marek
    Okolewski, Andrzej
    Boczek, Michal
    INFORMATION SCIENCES, 2014, 266 : 140 - 147
  • [28] A Chebyshev type inequality for Sugeno integral and comonotonicity
    Girotto, Bruno
    Holzer, Silvano
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2011, 52 (03) : 444 - 448
  • [29] A Feng Qi Type Inequality for Sugeno Integral
    Agahi, Hamzeh
    Yaghoobi, Mohammad Ali
    FUZZY INFORMATION AND ENGINEERING, 2010, 2 (03) : 293 - 304
  • [30] Related Fritz Carlson type inequalities for Sugeno integrals
    Daraby, Bayaz
    Arabi, Leila
    SOFT COMPUTING, 2013, 17 (10) : 1745 - 1750