The non-linear Curvature Wavefront Sensor Reconstruction Speed and Broadband Design

被引:5
|
作者
Mateen, Mala [1 ,2 ]
Guyon, Olivier [3 ,4 ]
Sasian, Jose [1 ]
Garrel, Vincent [3 ]
Hart, Michael [4 ]
机构
[1] Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA
[2] US Air Force, Res Lab, Kirtland AFB, NM 87117 USA
[3] Subaru Telescope, Hilo, HI 96720 USA
[4] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
wavefront sensitivity; extreme-adaptive optics; non-linear curvature wavefront sensor; Shack-Hartmann wavefront sensor;
D O I
10.1117/12.894311
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we explain why a non-linear curvature wavefront sensor (nlCWFS) is more sensitive than conventional wavefront sensors such as the Shack Hartmann wavefront sensor (SHWFS) and the conventional curvature wavefront sensor (cCWFS) for sensing m(V) < 14 natural guide stars. The non-linear approach builds on the successful curvature wavefront sensing concept but uses a non-linear Gerchberg-Saxton (GS) phase diversity algorithm to reconstruct the wavefront. The non-linear reconstruction algorithm is an advantage for sensitivity but a challenge for fast computation. The current speed is a factor of 10 to 100 times slower than needed for high performance ground-based AO. We present a two step strategy to increase the speed of the algorithm. In the last paper(3) we presented laboratory results obtained with a monochromatic source, here we extend our experiment to incorporate a broadband source. The sensitivity of the nlCWFS depends on the ability to extract wavefront phase from diffraction limited speckles therefore it is essential that the speckles do not suffer from chromatic aberration when used with a polychromatic source. We discuss the design for the chromatic re-imaging optics, which through chromatic compensation, allow us to obtain diffraction limited speckles in Fresnel propagated planes on either side of the pupil plane.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Direct Reconstruction Technique to Retrieve Phase in a Non-Linear Curvature Wavefront Sensor
    Oliker, Michael
    Mateen, Mala
    ADAPTIVE OPTICS SYSTEMS VI, 2018, 10703
  • [2] The AOLI low-order non-linear curvature wavefront sensor: a method for high sensitivity wavefront reconstruction
    Crass, Jonathan
    Aisher, Peter
    Femenia, Bruno
    King, David L.
    Mackay, Craig D.
    Rebolo-Lopez, Rafael
    Labadie, Lucas
    Perez Garrido, Antonio
    Balcells, Marc
    Diaz Sanchez, Anastasio
    Jimenez Fuensalida, Jesus
    Lopez, Roberto L.
    Oscoz, Alejandro
    Perez Prieto, Jorge A.
    Rodriguez-Ramos, Luis F.
    Villo, Isidro
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [3] Results from the laboratory demonstration of the non-linear Curvature Wavefront Sensor
    Mateen, Mala
    Garrel, Vincent
    Hart, Michael
    Guyon, Olivier
    ADAPTIVE OPTICS SYSTEMS II, 2010, 7736
  • [4] Wavefront phase retrieval with non-linear curvature sensors
    Aisher, P. L.
    Crass, J.
    Mackay, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 429 (03) : 2019 - 2031
  • [5] The AOLI low-order non-linear curvature wavefront sensor: Laboratory and on-sky results
    Crass, Jonathan
    King, David
    Mackay, Craig
    ADAPTIVE OPTICS SYSTEMS IV, 2014, 9148
  • [6] Design Optimization of Linear and Non-Linear Cantilevered Energy Harvesters for Broadband Vibrations
    Wickenheiser, Adam M.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (11) : 1213 - 1225
  • [7] WAVEFRONT REVERSAL BY NON-LINEAR OPTICS METHODS
    ZELDOVICH, BY
    PILIPETSKY, NF
    RAGULSKY, VV
    SHKUNOV, VV
    KVANTOVAYA ELEKTRONIKA, 1978, 5 (08): : 1800 - 1803
  • [8] PID Controller Design for Motor Speed Regulation with Linear and Non-Linear Load
    Rajs, Vladimir
    Rasevic, Nikola Lj
    Bodic, Miln Z.
    Zukovic, Miodrag M.
    Babkovic, B. Kalman
    IFAC PAPERSONLINE, 2022, 55 (04): : 225 - 229
  • [9] Synthesis, design and characterization of a non-linear optical sensor.
    Wun, AW
    Nocera, DG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1089 - U1089
  • [10] NON-LINEAR ROTATION SENSOR
    COOK, DF
    ELECTRONICS & WIRELESS WORLD, 1984, 90 (1577): : 35 - 35