JOINT DISTRIBUTION OF A SPECTRALLY NEGATIVE LEVY PROCESS AND ITS OCCUPATION TIME, WITH STEP OPTION PRICING IN VIEW

被引:16
作者
Guerin, Helene [1 ]
Renaud, Jean-Francois [2 ]
机构
[1] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
[2] Univ Quebec Montreal UQAM, Dept Math, 201 Av President Kennedy, Montreal, PQ H2X 3Y7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Occupation time; spectrally negative Levy process; fluctuation theory; scale function; step option; 1ST PASSAGE TIMES;
D O I
10.1017/apr.2015.17
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the distribution E-x[exp (-q integral(t)(0) 1((a, b))(X-s) ds); X-t epsilon dy], where -infinity <= a < b < infinity, and where q, t > 0 and x epsilon R for a spectrally negative Levy process X. More precisely, we identify the Laplace transform with respect to t of this measure in terms of the scale functions of the underlying process. Our results are then used to price step options and the particular case of an exponential spectrally negative Levy jump-diffusion model is discussed.
引用
收藏
页码:274 / 297
页数:24
相关论文
共 14 条
[1]   SOME FORMULAE FOR A NEW TYPE OF PATH-DEPENDENT OPTION [J].
Akahori, Jiro .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (02) :383-388
[2]   Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options [J].
Cai, Ning ;
Chen, Nan ;
Wan, Xiangwei .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :412-437
[3]   On first passage times of a hyper-exponential jump diffusion process [J].
Cai, Ning .
OPERATIONS RESEARCH LETTERS, 2009, 37 (02) :127-134
[4]  
Hugonnier J., 1999, INT J THEOR APPL FIN, V2, P153, DOI DOI 10.1142/S021902499900011X
[5]   The Theory of Scale Functions for Spectrally Negative Levy Processes [J].
Kuznetsov, Alexey ;
Kyprianou, Andreas E. ;
Rivero, Victor .
LEVY MATTERS II: RECENT PROGRESS IN THEORY AND APPLICATIONS: FRACTIONAL LEVY FIELDS, AND SCALE FUNCTIONS, 2012, 2061 :97-186
[6]   Occupation Times of Refracted Levy Processes [J].
Kyprianou, A. E. ;
Pardo, J. C. ;
Perez, J. L. .
JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (04) :1292-1315
[7]  
KYPRIANOU AE, 2006, INTRODUCTORY LECTURE
[8]   Sojourn Time in an Union of Intervals for Diffusions [J].
Lachal, Aime .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2013, 15 (04) :743-771
[9]   An Insurance Risk Model with Parisian Implementation Delays [J].
Landriault, David ;
Renaud, Jean-Francois ;
Zhou, Xiaowen .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (03) :583-607
[10]   Occupation times of spectrally negative Levy processes with applications [J].
Landriault, David ;
Renaud, Jean-Francois ;
Zhou, Xiaowen .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) :2629-2641