Stabilization by noise for a class of stochastic reaction-diffusion equations

被引:19
作者
Cerrai, S
机构
[1] Univ Florence, Dipartimento Matemat Decis, I-50134 Florence, Italy
[2] Scuola Normale Super Pisa, Pisa, Italy
关键词
D O I
10.1007/s00440-004-0421-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove uniqueness, ergodicity and strongly mixing property of the invariant measure for a class of stochastic reaction-diffusion equations with multiplicative noise, in which the diffusion term in front of the noise may vanish and the deterministic part of the equation is not necessary asymptotically stable. To this purpose, we show that the L-1-norm of the difference of two solutions starting from any two different initial data converges P-a.s. to zero, as time goes to infinity.
引用
收藏
页码:190 / 214
页数:25
相关论文
共 22 条
[1]   STABILIZATION BY NOISE REVISITED [J].
ARNOLD, L .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (07) :235-246
[2]  
ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
[3]   On stabilization of partial differential equations by noise [J].
Caraballo, T ;
Liu, K ;
Mao, X .
NAGOYA MATHEMATICAL JOURNAL, 2001, 161 :155-170
[4]  
CARABALLO T, 2003, EXPONENTIALLY STABLE
[5]  
Cerrai S, 2004, ANN PROBAB, V32, P1100
[6]   Large deviations for invariant measures of general stochastic reaction-diffusion systems [J].
Cerrai, S ;
Röckner, M .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (09) :597-602
[7]   Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term [J].
Cerrai, S .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (02) :271-304
[8]  
CERRAI S., 2001, LECT NOTES MATH, V1762
[9]  
DAPRATO G, 1996, LECT NOTES SERIES, V229
[10]  
DaPrato G., 2014, Stochastic Equations in Infinite Dimensions, V152, P493, DOI [10.1017/CBO9781107295513, 10.1017/CBO9780511666223]