Poincare inequalities, embeddings, and wild groups

被引:77
作者
Naor, Assaf [1 ]
Silberman, Lior [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC, Canada
关键词
Gromov's random groups; fixed points; Poincare inequalities; DISCRETE-GROUP-ACTIONS; PROPERTY T; ISOMETRIC ACTIONS; RANDOM-WALK; LIE GROUPS; REPRESENTATIONS; 1-COHOMOLOGY; CONVEXITY; DIMENSION; THEOREM;
D O I
10.1112/S0010437X11005343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present geometric conditions on a metric space (Y, d(Y)) ensuring that, almost surely, any isometric action on Y by Gromov's expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincare inequalities, and they are stable under natural operations such as scaling, Gromov-Hausdorff limits, and Cartesian products. We use methods from metric embedding theory to establish the validity of these conditions for a variety of classes of metric spaces, thus establishing new fixed point results for actions of Gromov's 'wild groups'.
引用
收藏
页码:1546 / 1572
页数:27
相关论文
共 40 条
[1]  
Alon N., 2000, WILEY INTERSCIENCE S
[2]  
Arzhantseva G. A., 2008, EXAMPLES RANDO UNPUB
[3]   Infinite groups with fixed point properties [J].
Arzhantseva, Goulnara ;
Bridson, Martin R. ;
Januszkiewicz, Tadeusz ;
Leary, Ian J. ;
Minasyan, Ashot ;
Swiatkowski, Jacek .
GEOMETRY & TOPOLOGY, 2009, 13 :1229-1263
[4]   Property (T) and rigidity for actions on Banach spaces [J].
Bader, Uri ;
Furman, Alex ;
Gelander, Tsachik ;
Monod, Nicolas .
ACTA MATHEMATICA, 2007, 198 (01) :57-105
[5]   SHARP UNIFORM CONVEXITY AND SMOOTHNESS INEQUALITIES FOR TRACE NORMS [J].
BALL, K ;
CARLEN, EA ;
LIEB, EH .
INVENTIONES MATHEMATICAE, 1994, 115 (03) :463-482
[6]   On metric Ramsey-type phenomena [J].
Bartal, Y ;
Linial, N ;
Mendel, M ;
Naor, A .
ANNALS OF MATHEMATICS, 2005, 162 (02) :643-709
[7]   ON LIPSCHITZ EMBEDDING OF FINITE METRIC-SPACES IN HILBERT-SPACE [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 52 (1-2) :46-52
[8]   A topological Tits alternative [J].
Breuillard, E. ;
Gelander, T. .
ANNALS OF MATHEMATICS, 2007, 166 (02) :427-474
[9]  
Bridson Martin R., 1999, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V319, DOI [10.1007/978-3-662-12494-9, DOI 10.1007/978-3-662-12494-9]
[10]  
DELORME P, 1977, B SOC MATH FR, V105, P281