Carbon Nanofoam Supercapacitor Electrodes with Enhanced Performance Using a Water-Transfer Process

被引:5
作者
Nufer, Sebastian [1 ,2 ]
Lynch, Peter [2 ]
Cann, Maria [1 ]
Large, Matthew J. [2 ]
Salvage, Jonathan P. [3 ]
Victor-Roman, Sandra [4 ]
Hernandez-Ferrer, Javier [4 ]
Benito, Ana M. [4 ]
Maser, Wolfgang K. [4 ]
Brunton, Adam [1 ]
Dalton, Alan B. [2 ]
机构
[1] M Solv Ltd, Oxonian Park, Oxford OX5 1FP, England
[2] Univ Sussex, Dept Phys & Astron, Brighton BN1 9RH, E Sussex, England
[3] Univ Brighton, Sch Pharm & Biomol Sci, Brighton BN2 4GJ, E Sussex, England
[4] CSIC, Inst Carboquim ICB, E-50018 Zaragoza, Spain
基金
欧盟地平线“2020”;
关键词
FOAM; GRAPHENE; BEHAVIOR; LIQUID; STRAIN; ENERGY; PAPER;
D O I
10.1021/acsomega.8b02118
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon nanofoam (CNF) is a highly porous, amorphous carbon nanomaterial that can be produced through the interaction of a high-fluence laser and a carbon-based target material. The morphology and electrical properties of CNF make it an ideal candidate for supercapacitor applications. In this paper, we prepare and characterize CNF supercapacitor electrodes through two different processes, namely, a direct process and a water-transfer process. We elucidate the influence of the production process on the microstructural properties of the CNF, as well as the final electrochemical performance. We show that a change in morphology due to capillary forces doubles the specific capacitance of the wet-transferred CNF electrodes.
引用
收藏
页码:15134 / 15139
页数:6
相关论文
共 35 条
[1]   Tailoring porosity in carbon materials for supercapacitor applications [J].
Borchardt, L. ;
Oschatz, M. ;
Kaskel, S. .
MATERIALS HORIZONS, 2014, 1 (02) :157-168
[2]   Carbon foam derived from various precursors [J].
Chen, C ;
Kennel, EB ;
Stiller, AH ;
Stansberry, PG ;
Zondlo, JW .
CARBON, 2006, 44 (08) :1535-1543
[3]   Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors [J].
Chen, Jizhang ;
Xu, Junling ;
Zhou, Shuang ;
Zhao, Ni ;
Wong, Ching-Ping .
NANO ENERGY, 2016, 25 :193-202
[4]   Measuring the uniaxial strain of individual single-wall carbon nanotubes:: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes -: art. no. 167401 [J].
Cronin, SB ;
Swan, AK ;
Unlü, MS ;
Goldberg, BB ;
Dresselhaus, MS ;
Tinkham, M .
PHYSICAL REVIEW LETTERS, 2004, 93 (16) :167401-1
[5]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[6]   One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors [J].
Fan, Zhuangjun ;
Qi, Dongping ;
Xiao, Ying ;
Yan, Jun ;
Wei, Tong .
MATERIALS LETTERS, 2013, 101 :29-32
[7]   Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2001, 64 (07)
[8]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[9]   Review on supercapacitors: Technologies and materials [J].
Gonzalez, Ander ;
Goikolea, Eider ;
Andoni Barrena, Jon ;
Mysyk, Roman .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 58 :1189-1206
[10]   Dynamics of confined plumes during short and ultrashort pulsed laser ablation of graphite [J].
Henley, SJ ;
Carey, JD ;
Silva, SRP ;
Fuge, GM ;
Ashfold, MNR ;
Anglos, D .
PHYSICAL REVIEW B, 2005, 72 (20)