Introduction to compact (matrix) quantum groups and Banica-Speicher (easy) quantum groups

被引:17
|
作者
Weber, Moritz [1 ]
机构
[1] Saarland Univ, Saarbrucken, Germany
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2017年 / 127卷 / 05期
关键词
Compact quantum groups; compact matrix quantum groups; easy quantum groups; Banica-Speicher quantum groups; noncrossing partitions; categories of partitions; tensor categories; Tannaka-Krein duality; FREE WREATH PRODUCT; AUTOMORPHISM-GROUPS; PERMUTATION-GROUPS; FUSION RULES; REFLECTION GROUPS; FREE PROBABILITY; LEVY PROCESSES; HOPF-ALGEBRAS; INTEGRATION; FREENESS;
D O I
10.1007/s12044-017-0362-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a transcript of a series of eight lectures, 90 min each, held at IMSc Chennai, India from 5-24 January 2015. We give basic definitions, properties and examples of compact quantum groups and compact matrix quantum groups such as the existence of a Haar state, the representation theory and Woronowicz's quantum version of the Tannaka-Krein theorem. Building on this, we define Banica-Speicher quantum groups (also called easy quantum groups), a class of compact matrix quantum groups determined by the combinatorics of set partitions. We sketch the classification of Banica-Speicher quantum groups and we list some applications. We review the state-of-the-art regarding Banica-Speicher quantum groups and we list some open problems.
引用
收藏
页码:881 / 933
页数:53
相关论文
共 50 条
  • [41] QUANTUM GROUPS AND GENERALIZED CIRCULAR ELEMENTS
    Brannan, Michael
    Kirkpatrick, Kay
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (01) : 35 - 61
  • [42] Sinkhorn Algorithm for Quantum Permutation Groups
    Nechita, Ion
    Schmidt, Simon
    Weber, Moritz
    EXPERIMENTAL MATHEMATICS, 2023, 32 (01) : 156 - 168
  • [43] Wreath products of finite groups by quantum groups
    Freslon, Amaury
    Skalski, Adam
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (01) : 29 - 68
  • [44] The Connes-Moscovici approach to cyclic cohomology for compact quantum groups
    Kustermans, J
    Rognes, J
    Tuset, L
    K-THEORY, 2002, 26 (02): : 101 - 137
  • [45] Amenable actions of compact and discrete quantum groups on von Neumann algebras
    De Commer, K.
    De Ro, J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (06)
  • [46] Convolution semigroups on locally compact quantum groups and noncommutative Dirichlet forms
    Skalski, Adam
    Viselter, Ami
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 124 : 59 - 105
  • [47] Ergodic actions of compact quantum groups from solutions of the conjugate equations
    Pinzari, Claudia
    Roberts, John E.
    KYOTO JOURNAL OF MATHEMATICS, 2017, 57 (03) : 519 - 552
  • [48] Existence and examples of quantum isometry groups for a class of compact metric spaces
    Goswami, Debashish
    ADVANCES IN MATHEMATICS, 2015, 280 : 340 - 359
  • [49] Braided groups and quantum groupoids
    Liu, G. H.
    Zhu, H. X.
    ACTA MATHEMATICA HUNGARICA, 2012, 135 (04) : 383 - 399
  • [50] Simple modules of small quantum groups at dihedral groups
    Garcia, Gaston A.
    Vay, Cristian
    DOCUMENTA MATHEMATICA, 2024, 29 : 1 - 38