Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration

被引:130
作者
Assuncao-Silva, Rita C. [1 ,2 ]
Gomes, Eduardo D. [1 ,2 ]
Sousa, Nuno [1 ,2 ]
Silva, Nuno A. [1 ,2 ]
Salgado, Antonio J. [1 ,2 ]
机构
[1] Univ Minho, Sch Hlth Sci, Life & Hlth Sci Res Inst ICVS, P-4710057 Braga, Portugal
[2] PT Govt Associate Lab, ICVS 3Bs, Braga, Portugal
关键词
OLFACTORY ENSHEATHING CELLS; NEURAL STEM-CELLS; PROMOTES FUNCTIONAL RECOVERY; CENTRAL-NERVOUS-SYSTEM; MARROW STROMAL CELLS; COLONY-STIMULATING FACTOR; BONE-MARROW; SCHWANN-CELL; AXONAL REGENERATION; INDUCED PLURIPOTENT;
D O I
10.1155/2015/948040
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
引用
收藏
页数:24
相关论文
共 257 条
[1]   Expansion and neural differentiation of embryonic stem cells in adherent and suspension cultures [J].
Abranches, E ;
Bekman, E ;
Henrique, D ;
Cabral, JMS .
BIOTECHNOLOGY LETTERS, 2003, 25 (09) :725-730
[2]  
ADAMS JC, 1993, DEVELOPMENT, V117, P1183
[3]  
Alcantar NA, 2000, J BIOMED MATER RES, V51, P343, DOI 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO
[4]  
2-D
[5]  
[Anonymous], 2013, MIAM PROJ CUR PAR DO
[6]   Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury [J].
Ansorena, Eduardo ;
De Berdt, Pauline ;
Ucakar, Bernard ;
Simon-Yarza, Teresa ;
Jacobs, Damien ;
Schakman, Olivier ;
Jankovski, Aleksandar ;
Deumens, Ronald ;
Blanco-Prieto, Maria J. ;
Preat, Veronique ;
des Rieux, Anne .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2013, 455 (1-2) :148-158
[7]   Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells [J].
Araki, Ryoko ;
Uda, Masahiro ;
Hoki, Yuko ;
Sunayama, Misato ;
Nakamura, Miki ;
Ando, Shunsuke ;
Sugiura, Mayumi ;
Ideno, Hisashi ;
Shimada, Akemi ;
Nifuji, Akira ;
Abe, Masumi .
NATURE, 2013, 494 (7435) :100-104
[8]   Transplantation of Predifferentiated Adipose-Derived Stromal Cells for the Treatment of Spinal Cord Injury [J].
Arboleda, David ;
Forostyak, Serhiy ;
Jendelova, Pavla ;
Marekova, Dana ;
Amemori, Takashi ;
Pivonkova, Helena ;
Masinova, Katarina ;
Sykova, Eva .
CELLULAR AND MOLECULAR NEUROBIOLOGY, 2011, 31 (07) :1113-1122
[9]   Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture [J].
Ashton, Randolph S. ;
Banerjee, Akhilesh ;
Punyani, Supriya ;
Schaffer, David V. ;
Kane, Ravi S. .
BIOMATERIALS, 2007, 28 (36) :5518-5525
[10]   Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells [J].
Bachelin, C ;
Lachapelle, F ;
Girard, C ;
Moissonnier, P ;
Serguera-Lagache, C ;
Mallet, J ;
Fontaine, D ;
Chojnowski, A ;
Le Guern, E ;
Nait-Oumesmar, B ;
Baron-Van Evercooren, A .
BRAIN, 2005, 128 :540-549