Toward Edge-Based Deep Learning in Industrial Internet of Things

被引:0
|
作者
Liang, Fan [1 ]
Yu, Wei [1 ]
Liu, Xing [1 ]
Griffith, David [2 ]
Golmie, Nada [2 ]
机构
[1] Towson Univ, Dept Comp & Informat Sci, Towson, MD 21286 USA
[2] NIST, Commun Technol Lab, Gaithersburg, MD 20899 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2020年 / 7卷 / 05期
关键词
Distributed deep learning; edge computing; fog computing; Industrial Internet of Things (IIoT); BIG DATA; PLATFORMS; NETWORKS; SECURITY;
D O I
10.1109/JIOT.2019.2963635
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a typical application of the Internet of Things (IoT), the Industrial IoT (IIoT) connects all the related IoT sensing and actuating devices ubiquitously so that the monitoring and control of numerous industrial systems can be realized. Deep learning, as one viable way to carry out big-data-driven modeling and analysis, could be integrated in IIoT systems to aid the automation and intelligence of IIoT systems. As deep learning requires large computation power, it is commonly deployed in cloud servers. Thus, the data collected by IoT devices must be transmitted to the cloud for training process, contributing to network congestion and affecting the IoT network performance as well as the supported applications. To address this issue, in this article, we leverage the fog/edge computing paradigm and propose an edge computing-based deep learning model, which utilizes edge computing to migrate the deep learning process from cloud servers to edge nodes, reducing data transmission demands in the IIoT network and mitigating network congestion. Since edge nodes have limited computation ability compared to servers, we design a mechanism to optimize the deep learning model so that its requirements for computational power can be reduced. To evaluate our proposed solution, we design a testbed implemented in the Google cloud and deploy the proposed convolutional neural network (CNN) model, utilizing a real-world IIoT data set to evaluate our approach. (1) Our experimental results confirm the effectiveness of our approach, which cannot only reduce the network traffic overhead for IIoT but also maintain the classification accuracy in comparison with several baseline schemes. (1) Certain commercial equipment, instruments, or materials are identified in this article in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
引用
收藏
页码:4329 / 4341
页数:13
相关论文
共 50 条
  • [21] Privacy protection framework for face recognition in edge-based Internet of Things
    Xie, Yun
    Li, Peng
    Nedjah, Nadia
    Gupta, Brij B.
    Taniar, David
    Zhang, Jindan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (05): : 3017 - 3035
  • [22] On deep reinforcement learning security for Industrial Internet of Things
    Liu, Xing
    Yu, Wei
    Liang, Fan
    Griffith, David
    Golmie, Nada
    COMPUTER COMMUNICATIONS, 2021, 168 : 20 - 32
  • [23] Deep Generative Models in the Industrial Internet of Things: A Survey
    De, Suparna
    Bermudez-Edo, Maria
    Xu, Honghui
    Cai, Zhipeng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 5728 - 5737
  • [24] Fog-Based Attack Detection Framework for Internet of Things Using Deep Learning
    Samy, Ahmed
    Yu, Haining
    Zhang, Hongli
    IEEE ACCESS, 2020, 8 : 74571 - 74585
  • [25] Deep Learning in the Industrial Internet of Things: Potentials, Challenges, and Emerging Applications
    Khalil, Ruhul Amin
    Saeed, Nasir
    Masood, Mudassir
    Fard, Yasaman Moradi
    Alouini, Mohamed-Slim
    Al-Naffouri, Tareq Y.
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (14): : 11016 - 11040
  • [26] Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges
    Qiu, Tie
    Chi, Jiancheng
    Zhou, Xiaobo
    Ning, Zhaolong
    Atiquzzaman, Mohammed
    Wu, Dapeng Oliver
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (04): : 2462 - 2488
  • [27] The Impact of Edge Computing on the Industrial Internet of Things
    Sekonya, Nkata
    Sithungu, Siphesihle
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON CYBER WARFARE AND SECURITY ICCWS, 2023, : 360 - 368
  • [28] Sensor anomaly detection in the industrial internet of things based on edge computing
    Kong, Dequan
    Liu, Desheng
    Zhang, Lei
    He, Lili
    Shi, Qingwu
    Ma, Xiaojun
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2020, 28 (01) : 331 - 346
  • [29] Toward Deep Q-Network-Based Resource Allocation in Industrial Internet of Things
    Liang, Fan
    Yu, Wei
    Liu, Xing
    Griffith, David
    Golmie, Nada
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 9138 - 9150
  • [30] Identification of malicious activities in industrial internet of things based on deep learning models
    AL-Hawawreh, Muna
    Moustafa, Nour
    Sitnikova, Elena
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2018, 41 : 1 - 11