Nef cones of Hilbert schemes of points on surfaces

被引:15
作者
Bolognese, Barbara [1 ]
Huizenga, Jack [2 ]
Lin, Yinbang [1 ]
Riedl, Eric [3 ]
Schmidt, Benjamin [4 ]
Woolf, Matthew [3 ]
Zhao, Xiaolei [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02115 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Univ Illinois, Dept Math Stat & CS, Chicago, IL 60607 USA
[4] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Hilbert schemes; surfaces; nef cone; ample cone; birational geometry; Bridgeland stability; STABILITY CONDITIONS; ALGEBRAIC SURFACE; BRIDGELAND STABILITY; BIRATIONAL GEOMETRY; MODULI SPACES; EMBEDDINGS; FAMILIES; BUNDLES; PLANE;
D O I
10.2140/ant.2016.10.907
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth projective surface of irregularity 0. The Hilbert scheme X-[n] of n points on X parametrizes zero-dimensional subschemes of X of length n. We discuss general methods for studying the cone of ample divisors on X-[n]. We then use these techniques to compute the cone of ample divisors on X-[n] for several surfaces where the cone was previously unknown. Our examples include families of surfaces of general type and del Pezzo surfaces of degree 1. The methods rely on Bridgeland stability and the positivity lemma of Bayer and Macri.
引用
收藏
页码:907 / 930
页数:24
相关论文
共 30 条
[1]  
Arbarello E., 1985, GRUND MATH WISS, V267
[2]   Bridgeland-stable moduli spaces for K-trivial surfaces [J].
Arcara, Daniele ;
Bertram, Aaron ;
Lieblich, Max .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :1-38
[3]   The minimal model program for the Hilbert scheme of points on P2 and Bridgeland stability [J].
Arcara, Daniele ;
Bertram, Aaron ;
Coskun, Izzet ;
Huizenga, Jack .
ADVANCES IN MATHEMATICS, 2013, 235 :580-626
[4]  
Bayer A., 2014, PREPRINT
[5]   MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations [J].
Bayer, Arend ;
Macri, Emanuele .
INVENTIONES MATHEMATICAE, 2014, 198 (03) :505-590
[6]   PROJECTIVITY AND BIRATIONAL GEOMETRY OF BRIDGELAND MODULI SPACES [J].
Bayer, Arend ;
Macri, Emanuele .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (03) :707-752
[7]  
Beauville A., 1996, LONDON MATH SOC STUD, V34
[8]   ON REIDER METHOD AND HIGHER-ORDER EMBEDDINGS [J].
BELTRAMETTI, M ;
FRANCIA, P ;
SOMMESE, AJ .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) :425-439
[9]  
Beltrametti M., 1991, SYMPOS MATH 32 PROBL, V32, P33
[10]  
BERTRAM A., 2013, Birational geometry, rational curves, and arithmetic, P15