Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions

被引:62
作者
Hussain, N. [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
common fixed points; compatible maps; Banach operator pair; contractive condition of Ciric type; best approximation;
D O I
10.1016/j.jmaa.2007.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Intemat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings. (C) 2007 Elsevier Inc. All fights reserved.
引用
收藏
页码:1351 / 1363
页数:13
相关论文
共 39 条
[21]   COMMUTING MAPPINGS AND FIXED-POINTS [J].
JUNGCK, G .
AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (04) :261-263
[22]  
JUNGCK G, 1990, INT J MATH MATH SCI, V13, P497, DOI DOI 10.1155/S0161171290000710
[23]  
Khan A.R., 2000, APPROX THEORY APPL, V16, P48
[24]   SOME RESULTS ON COMMON FIXED POINTS AND BEST APPROXIMATION [J].
Khan, Abdul Rahim ;
Latif, Abdul ;
Bano, Arjamand ;
Hussain, Nawab .
TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (01) :33-38
[25]  
KHAN AR, 2001, SCI MATH JPN, V54, P503
[26]  
Khan L. A., 1995, APPROXIMATION THEORY, V11, P1
[27]  
Kothe G, 1969, GRUNDLEHREN MATH WIS, V159
[28]   INVARIANZ BEI LINEAREN APPROXIMATIONEN [J].
MEINARDUS, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1963, 14 (04) :301-303
[29]  
MUKHERJEE RN, 1988, MATH JPN, V33, P745
[30]   Generalized I-contractions and pointwise R-subweakly commuting maps [J].
O'Regan, D. ;
Hussain, N. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (08) :1505-1508