Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions

被引:62
作者
Hussain, N. [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
common fixed points; compatible maps; Banach operator pair; contractive condition of Ciric type; best approximation;
D O I
10.1016/j.jmaa.2007.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Intemat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings. (C) 2007 Elsevier Inc. All fights reserved.
引用
收藏
页码:1351 / 1363
页数:13
相关论文
共 39 条
[11]  
FISHER B, 1986, INT J MATH MATH SCI, V9, P23, DOI DOI 10.1155/S0161171286000030
[12]  
GREGUS M, 1980, B UNIONE MAT ITAL, V17, P193
[13]   FIXED-POINT THEOREMS AND INVARIANT APPROXIMATIONS [J].
HABINIAK, L .
JOURNAL OF APPROXIMATION THEORY, 1989, 56 (03) :241-244
[14]   Common fixed point and invariant approximation results for gregus type I-contractions [J].
Hussain, N. ;
Rhoades, B. E. ;
Jungck, G. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (9-10) :1139-1151
[15]   Common fixed-point results in best approximation theory [J].
Hussain, N ;
Khan, AR .
APPLIED MATHEMATICS LETTERS, 2003, 16 (04) :575-580
[16]   Cq-commuting maps and invariant approximations [J].
Hussain, N. ;
Rhoades, B. E. .
FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
[17]  
HUSSAIN N, 2006, J MATH ANAL APPL, DOI DOI 10.1155/FPTA/2006/23582
[18]   Common fixed point and invariant approximation results in certain metrizable topological vector spaces [J].
Hussain, Nawab ;
Berinde, Vasile .
FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
[19]   Compatible maps and invariant approximations [J].
Jungck, G. ;
Hussain, N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) :1003-1012