Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions

被引:62
作者
Hussain, N. [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
common fixed points; compatible maps; Banach operator pair; contractive condition of Ciric type; best approximation;
D O I
10.1016/j.jmaa.2007.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Intemat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings. (C) 2007 Elsevier Inc. All fights reserved.
引用
收藏
页码:1351 / 1363
页数:13
相关论文
共 39 条
[1]   Common fixed points and best approximation [J].
AlThagafi, MA .
JOURNAL OF APPROXIMATION THEORY, 1996, 85 (03) :318-323
[2]  
[Anonymous], MATH JPN
[3]  
[Anonymous], 1997, FIXED POINT THEORY B
[4]  
BERINDE V, 2003, ANN U SCI BUDAP, V46, P81
[5]   Common fixed-points for Banach operator pairs in best approximation [J].
Chen, Jianren ;
Li, Zhongkai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :1466-1475
[6]   On a generalization of a Gregus fixed point theorem [J].
Ciric, L .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2000, 50 (03) :449-458
[7]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[8]   Contractive type non-self mappings on metric spaces of hyperbolic type [J].
Ciric, LB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) :28-42
[9]  
Ciric Lj.B., 1991, PUBL I MATH, V49, P174
[10]  
CIRIC LJB, 1993, ARCH MATH-BRNO, V29, P145