Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana

被引:172
|
作者
Kamauchi, S [1 ]
Nakatani, H [1 ]
Nakano, C [1 ]
Urade, R [1 ]
机构
[1] Kyoto Univ, Grad Sch Agr, Kyoto 6110011, Japan
关键词
endoplasmic reticulum; fluid microarray; gene expression; tunicamycin; unfolded protein response;
D O I
10.1111/j.1742-4658.2005.04770.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER). In this case, so-called unfolded protein response (UPR) genes are induced. We determined the transcriptional expression of Arabidopsis thaliana UPR genes by fluid microarray analysis of tunicamycin-treated plantlets. Two hundred and fifteen up-regulated genes and 17 down-regulated ones were identified. These genes were reanalyzed with functional DNA microarrays, using DNA fragments cloned through fluid microarray analysis. Finally, 36 up-regulated and two down-regulated genes were recognized as UPR genes. Among them, the up-regulation of genes related to protein degradation (HRD1, SEL-1L/HRD3 and DER1), regulation of translation (P58(IPK)), and apoptosis (BAX inhibitor-1) was reconfirmed by real-time reverse transcriptase-PCR. The induction of SEL-1L protein in an Arabidopsis membrane fraction on tunicamycin-treatment was demonstrated. Phosphorylation of initiation factor-2 alpha, which was inhibited by P58(IPK), was decreased in tunicamycin-treated plantlets. However, regulatory changes in translation caused by ER stress were not detected in Arabidopsis. Plant cells appeared to have a strategy for overcoming ER stress through enhancement of protein folding activity, degradation of unfolded proteins, and regulation of apoptosis, but not regulation of translation.
引用
收藏
页码:3461 / 3476
页数:16
相关论文
共 50 条
  • [1] Transcriptomic response of Arabidopsis thaliana to tunicamycin-induced endoplasmic reticulum stress
    Iwata, Yuji
    Sakiyama, Masayo
    Lee, Mi-Hyun
    Koizumi, Nozomu
    PLANT BIOTECHNOLOGY, 2010, 27 (02) : 161 - 171
  • [2] Characterization of a Plant-Specific Gene Induced by Endoplasmic Reticulum Stress in Arabidopsis thaliana
    Iwata, Yuji
    Nishino, Tsuneyo
    Takayama, Seiji
    Koizumi, Nozomu
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2010, 74 (10) : 2087 - 2091
  • [3] Cadmium treatment induces endoplasmic reticulum stress and unfolded protein response in Arabidopsis thaliana
    De Benedictis, Maria
    Gallo, Antonia
    Migoni, Danilo
    Papadia, Paride
    Roversi, Pietro
    Santino, Angelo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 196 : 281 - 290
  • [4] A transmembrane bZIP transcription factor regulating the endoplasmic reticulum stress response in Arabidopsis thaliana
    Iwata, Y
    Yoneda, M
    Koizumi, N
    PLANT AND CELL PHYSIOLOGY, 2006, 47 : S142 - S142
  • [5] Endoplasmic Reticulum Stress Response in Arabidopsis Roots
    Cho, Yueh
    Kanehara, Kazue
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [6] The involvement of gamma-aminobutyric acid shunt in the endoplasmic reticulum stress response of Arabidopsis thaliana
    Ozgur, Rengin
    Uzilday, Baris
    Bor, Melike
    Turkan, Ismail
    JOURNAL OF PLANT PHYSIOLOGY, 2020, 253
  • [7] Membrane glycerolipid equilibrium under endoplasmic reticulum stress in Arabidopsis thaliana
    Yu, Chao Yuan
    Van Cam Nguyen
    Chuang, Ling
    Kanehara, Kazue
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 500 (02) : 103 - 109
  • [8] The Effects of Melatonin on Transcriptional Profile of Unfolded Protein Response Genes Under Endoplasmic Reticulum Stress in Arabidopsis thaliana
    Ozgur, Rengin
    Uzilday, Baris
    Turkan, Ismail
    Sekmen, A. Hediye
    PLANT MOLECULAR BIOLOGY REPORTER, 2017, 35 (02) : 188 - 202
  • [9] The Effects of Melatonin on Transcriptional Profile of Unfolded Protein Response Genes Under Endoplasmic Reticulum Stress in Arabidopsis thaliana
    Rengin Ozgur
    Baris Uzilday
    Ismail Turkan
    A. Hediye Sekmen
    Plant Molecular Biology Reporter, 2017, 35 : 188 - 202
  • [10] Gene Expression and Genetic Variation in Response to Endoplasmic Reticulum Stress in Human Cells
    Dombroski, Beth A.
    Nayak, Renuka R.
    Ewens, Kathryn G.
    Ankener, Wendy
    Cheung, Vivian G.
    Spielman, Richard S.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (05) : 719 - 729