Simultaneous Envelopes for Multivariate Linear Regression

被引:40
作者
Cook, R. Dennis [1 ]
Zhang, Xin [2 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
Reduced-rank regression; Partial least squares; Principal component analysis; Canonical correlations; Sufficient dimension reduction; Grassmann manifold; Envelope model; SIMULTANEOUS DIMENSION REDUCTION;
D O I
10.1080/00401706.2013.872700
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce envelopes for simultaneously reducing the predictors and the responses in multivariate linear regression, so the regression then depends only on estimated linear combinations of X and Y. We use a likelihood-based objective function for estimating envelopes and then propose algorithms for estimation of a simultaneous envelope as well as for basic Grassmann manifold optimization. The asymptotic properties of the resulting estimator are studied under normality and extended to general distributions. We also investigate likelihood ratio tests and information criteria for determining the simultaneous envelope dimensions. Simulation studies and real data examples show substantial gain over the classical methods, like partial least squares, canonical correlation analysis, and reduced-rank regression. This article has supplementary material available online.
引用
收藏
页码:11 / 25
页数:15
相关论文
共 24 条
[1]  
Adragni K., 2012, J STAT SOFTW, V50, P1, DOI DOI 10.18637/JSS.V050.I05
[2]  
[Anonymous], 1966, MULTIVARIATE ANAL
[3]  
Bach F. R., 2005, A Probabilistic Interpretation of Canonical Correlation Analysis
[4]   Rank estimation in reduced-rank regression [J].
Bura, E ;
Cook, RD .
JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 87 (01) :159-176
[5]   Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection [J].
Chen, Lisha ;
Huang, Jianhua Z. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) :1533-1545
[6]   Sparse partial least squares regression for simultaneous dimension reduction and variable selection [J].
Chun, Hyonho ;
Keles, Suenduez .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :3-25
[7]  
Conway J. B., 1990, COURSE FUNCTIONAL AN
[8]   Envelopes and partial least squares regression [J].
Cook, R. D. ;
Helland, I. S. ;
Su, Z. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (05) :851-877
[9]  
Cook RD, 2010, STAT SINICA, V20, P927
[10]   SIMPLS - AN ALTERNATIVE APPROACH TO PARTIAL LEAST-SQUARES REGRESSION [J].
DEJONG, S .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1993, 18 (03) :251-263