Identities for hyperelliptic (sic)-functions of genus one, two and three in covariant form

被引:12
作者
Athorne, Chris [1 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
D O I
10.1088/1751-8113/41/41/415202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a covariant treatment of the quadratic differential identities satisfied by the (sic)-functions on the Jacobian of smooth hyperelliptic curves of genus <= 3.
引用
收藏
页数:20
相关论文
共 11 条
[1]  
AITKEN AC, 1956, DETERMINANTS MATRICE, V20
[2]  
[Anonymous], CRM P LECT NOTES
[3]  
[Anonymous], ABELIAN FUNCTIONS AB
[4]   A SL(2) covariant theory of genus 2 hyperelliptic functions [J].
Athorne, C ;
Eilbeck, JC ;
Enolskii, VZ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 136 :269-286
[5]   Identities for the classical genus two p function [J].
Athorne, C ;
Eilbeck, JC ;
Enolskii, VZ .
JOURNAL OF GEOMETRY AND PHYSICS, 2003, 48 (2-3) :354-368
[6]  
Athorne C, 2006, NATO SCI SER II MATH, V201, P17
[7]  
BAKER H, 1907, MULTIPLY PERIODIC FU
[8]   On a system of differential equations leading to periodic functions [J].
Baker, HF .
ACTA MATHEMATICA, 1903, 27 (01) :135-156
[9]  
Buchstaber VM., 1997, Solitons, Geometry, and Topology: On the Crossroad, P1
[10]  
Cassels J. W. S., 1996, LONDON MATH SOC LECT, V230