An improved convergence analysis of smoothed aggregation algebraic multigrid

被引:27
作者
Brezina, Marian [1 ]
Vanek, Petr [2 ]
Vassilevski, Panayot S. [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Univ W Bohemia, Dept Math, Plzen 30614, Czech Republic
[3] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
关键词
smoothed aggregation; algebraic multigrid; convergence analysis; polynomial smoother; aggressive coarsening;
D O I
10.1002/nla.775
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an improved analysis of the smoothed aggregation algebraic multigrid method extending the original proof in [Numer. Math. 2001; 88:559579] and its modification in [Multilevel Block Factorization Preconditioners. Matrix-based Analysis and Algorithms for Solving Finite Element Equations. Springer: New York, 2008]. The new result imposes fewer restrictions on the aggregates that makes it easier to verify in practice. Also, we extend a result in [Appl. Math. 2011] that allows us to use aggressive coarsening at all levels. This is due to the properties of the special polynomial smoother that we use and analyze. In particular, we obtain bounds in the multilevel convergence estimates that are independent of the coarsening ratio. Numerical illustration is also provided. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:441 / 469
页数:29
相关论文
共 13 条
[1]   The cascadic multigrid method for elliptic problems [J].
Bornemann, FA ;
Deuflhard, P .
NUMERISCHE MATHEMATIK, 1996, 75 (02) :135-152
[2]  
Brezina M, 140 UCD CCM
[3]  
Davis T. A., 2006, DIRECT METHODS SPARS
[4]  
Krizkova J, 1996, NUMER LINEAR ALGEBR, V3, P255, DOI 10.1002/(SICI)1099-1506(199607/08)3:4<255::AID-NLA77>3.0.CO
[5]  
2-2
[6]  
Shaidurov VV., 1995, MULTIGRID METHODS FI, DOI 10.1007/978-94-015-8527-9
[7]  
Toselli A., 2005, DOMAIN DECOMPOSITION
[8]   Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems [J].
Vanek, P ;
Mandel, J ;
Brezina, M .
COMPUTING, 1996, 56 (03) :179-196
[9]   Two-grid method for linear elasticity on unstructured meshes [J].
Vanek, P ;
Brezina, M ;
Tezaur, R .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (03) :900-923
[10]  
Vanek P, 2001, NUMER MATH, V88, P559, DOI 10.1007/s002110000226