Numerical modeling of surface plasmon enhanced silicon on insulator avalanche photodiodes

被引:8
|
作者
Crouse, D [1 ]
Solomon, R [1 ]
机构
[1] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
关键词
photodetector; resonant cavity enhanced; silicon; silicon-on-insulator; avalanche photodiodes; integrated optoelectronics; surface plasmons;
D O I
10.1016/j.sse.2005.07.003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report an atypical device structure for a silicon-on -insulator (SOI) avalanche photodiode (APD) that uses vertically oriented surface plasmons to enable high device performance including high bandwidth and high responsivity. This device structure would allow for high bandwidth (> 10 GHz) read out integrated circuitry to be fabricated alongside the photodetector. A detailed numerical simulation of the device is performed that includes the use of the surface impedance boundary condition (SIBC) algorithm to calculate the optical resonance modes of the structure. The SIBC algorithm is integrated with a Poisson's equation solver and a Monte Carlo algorithm to model many aspects of the Sol APD device including bandwidth and responsivity as a function of applied bias. A brief discussion of surface plasmon modes and other optical modes in the APD and similar structures is also given. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1697 / 1701
页数:5
相关论文
共 50 条
  • [1] Avalanche photodiodes on silicon photonics
    Yuan, Yuan
    Tossoun, Bassem
    Huang, Zhihong
    Zeng, Xiaoge
    Kurczveil, Geza
    Fiorentino, Marco
    Liang, Di
    Beausoleil, Raymond G.
    JOURNAL OF SEMICONDUCTORS, 2022, 43 (02)
  • [2] Numerical examination of silicon avalanche photodiodes operated in charge storage mode
    Parks, JW
    Brennan, KF
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (02) : 394 - 400
  • [3] Efficient photon number detection with silicon avalanche photodiodes
    Thomas, O.
    Yuan, Z. L.
    Dynes, J. F.
    Sharpe, A. W.
    Shields, A. J.
    APPLIED PHYSICS LETTERS, 2010, 97 (03)
  • [4] Localised feedback in silicon-based avalanche photodiodes
    Khodin, A
    Kovalevsky, V
    Leonova, T
    Shvarkov, D
    Zalessky, V
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 513 (1-2) : 178 - 182
  • [5] Design and properties of silicon avalanche photodiodes
    Wegrzecka, I
    Wegrzecki, M
    Grynglas, M
    Bar, J
    Uszynski, A
    Grodecki, R
    Grabiec, P
    Krzeminski, S
    Budzynski, T
    OPTO-ELECTRONICS REVIEW, 2004, 12 (01) : 95 - 104
  • [6] Silicon avalanche photodiodes for particle detection
    Chistokhin, I. B.
    Pchelyakov, O. P.
    Tishkovsky, E. G.
    Obodnikov, V. I.
    Maksimov, V. V.
    Ivanov, A. A.
    Gramsch, E.
    MICRO- AND NANOELECTRONICS 2007, 2008, 7025
  • [7] Excess noise in silicon avalanche photodiodes
    Kocak, F.
    Tapan, I.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2007, 9 (04): : 810 - 813
  • [8] Modeling of avalanche photodiodes by crosslight APSYS
    Xiao, Y. G.
    Li, Z. Q.
    Li, Z. M. Simon
    INFRARED AND PHOTOELECTRONIC IMAGERS AND DETECTOR DEVICES II, 2006, 6294
  • [9] Numerical Modeling of Graded Bandgap Long Wavelength Infrared HgCdTe Avalanche Photodiodes
    Prigozhin, Ilya
    Zhu, Mike
    Bellotti, Enrico
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (07) : 3791 - 3797
  • [10] Numerical analysis of homojunction avalanche photodiodes (APDs)
    Department of Electrical and Computer Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
    Prog. Electromagn. Res. C, 2008, (45-56): : 45 - 56