Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity

被引:229
作者
Eisenhauer, Nico [1 ]
Cesarz, Simone [2 ]
Koller, Robert [3 ]
Worm, Kally [1 ]
Reich, Peter B. [1 ]
机构
[1] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA
[2] Univ Gottingen, JF Blumenbach Inst Zool & Anthropol, D-37073 Gottingen, Germany
[3] Univ Cologne, Cologne Bioctr, D-50674 Cologne, Germany
基金
美国国家科学基金会;
关键词
aboveground-belowground interactions; BioCON; grassland; nematodes; protozoa; soil microarthropods; soil microorganisms; MICROBIAL COMMUNITY COMPOSITION; PLANT-SPECIES RICHNESS; ECOSYSTEM CARBON; ATMOSPHERIC CO2; DIVERSITY; GRASSLAND; RESPONSES; DEPOSITION; CLIMATE; BIOMASS;
D O I
10.1111/j.1365-2486.2011.02555.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The world's ecosystems are subjected to various anthropogenic global change agents, such as enrichment of atmospheric CO2 concentrations, nitrogen (N) deposition, and changes in precipitation regimes. Despite the increasing appreciation that the consequences of impending global change can be better understood if varying agents are studied in concert, there is a paucity of multi-factor long-term studies, particularly on belowground processes. Herein, we address this gap by examining the responses of soil food webs and biodiversity to enrichment of CO2, elevated N, and summer drought in a long-term grassland study at Cedar Creek, Minnesota, USA (BioCON experiment). We use structural equation modeling (SEM), various abiotic and biotic explanatory variables, and data on soil microorganisms, protozoa, nematodes, and soil microarthropods to identify the impacts of multiple global change effects on drivers belowground. We found that long-term (13-year) changes in CO2 and N availability resulted in modest alterations of soil biotic food webs and biodiversity via several mechanisms, encompassing soil water availability, plant productivity, and most importantly changes in rhizodeposition. Four years of manipulation of summer drought exerted surprisingly minor effects, only detrimentally affecting belowground herbivores and ciliate protists at elevated N. Elevated CO2 increased microbial biomass and the density of ciliates, microarthropod detritivores, and gamasid mites, most likely by fueling soil food webs with labile C. Moreover, beneficial bottom-up effects of elevated CO2 compensated for detrimental elevated N effects on soil microarthropod taxa richness. In contrast, nematode taxa richness was lowest at elevated CO2 and elevated N. Thus, enrichment of atmospheric CO2 concentrations and N deposition may result in taxonomically and functionally altered, potentially simplified, soil communities. Detrimental effects of N deposition on soil biodiversity underscore recent reports on plant community simplification. This is of particular concern, as soils house a considerable fraction of global biodiversity and ecosystem functions.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 87 条
  • [1] Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture
    Adair, E. Carol
    Reich, Peter B.
    Trost, Jared J.
    Hobbie, Sarah E.
    [J]. GLOBAL CHANGE BIOLOGY, 2011, 17 (12) : 3546 - 3563
  • [2] Interactive Effects of Time, CO2, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community
    Adair, E. Carol
    Reich, Peter B.
    Hobbie, Sarah E.
    Knops, Johannes M. H.
    [J]. ECOSYSTEMS, 2009, 12 (06) : 1037 - 1052
  • [3] Agrawal AA, 2006, ECOLOGY, V87, pS132, DOI 10.1890/0012-9658(2006)87[132:PDS]2.0.CO
  • [4] 2
  • [5] PHYSIOLOGICAL METHOD FOR QUANTITATIVE MEASUREMENT OF MICROBIAL BIOMASS IN SOILS
    ANDERSON, JPE
    DOMSCH, KH
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 1978, 10 (03) : 215 - 221
  • [6] [Anonymous], 1960, COLLEMBENFAUNA EUR
  • [7] Arbuckle J.L., 2010, IBM SPSS AMOS 19 USE
  • [8] Bardgett R., 2010, Oxford series in Ecology and Evolution
  • [9] An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C
    Beck, T
    Joergensen, RG
    Kandeler, E
    Makeschin, F
    Nuss, E
    Oberholzer, HR
    Scheu, S
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 1997, 29 (07) : 1023 - 1032
  • [10] Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments
    Blagodatskaya, Evgenia
    Blagodatsky, Sergey
    Dorodnikov, Maxim
    Kuzyakov, Yakov
    [J]. GLOBAL CHANGE BIOLOGY, 2010, 16 (02) : 836 - 848