Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape

被引:88
作者
Daum, Nicole [1 ]
Tscheka, Clemens [1 ]
Neumeyer, Andrea
Schneider, Marc [1 ]
机构
[1] Univ Saarland, Helmholtz Inst Pharmaceut Res Saarland, Helmholtz Ctr Infect Res, D-6600 Saarbrucken, Germany
关键词
MESOPOROUS SILICA NANOPARTICLES; WATER-SOLUBLE DRUG; CARBON NANOTUBES; SIZE; FABRICATION; MONODISPERSE; BIODISTRIBUTION; MEMBRANES; INTERNALIZATION; LITHOGRAPHY;
D O I
10.1002/wnan.165
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The identification of novel drug candidates for the treatment of diseases like cancer, infectious diseases, or allergies (especially asthma) assigns new tasks for pharmaceutical technology. With respect to drug delivery several problems occur such as low solubility and hence low bioavailability or restriction to inconvenient routes of administration. Nanotechnological approaches promise to circumvent some of these problems, therefore being well suited for future applications as nanomedicines. Furthermore, efficient and sufficient loading is a critical issue that is approached through mesoporous particles and/or through nonspherical particles both offering larger volumes and surfaces. Special interest is laid on the effect of shape of particulate materials on the body and related physiological mechanisms. The modified response of biological systems on different shapes opens a new dimension to adjust particle system interaction. Finally, the biological response to these systems will determine the fate with respect to their therapeutic value. Therefore, the interaction pattern between nonspherical particulate materials and biological systems as well as the production processes are highlighted. WIREs Nanomed Nanobiotechnol 2012, 4:5265. doi: 10.1002/wnan.165
引用
收藏
页码:52 / 65
页数:14
相关论文
共 81 条
[1]   The hydrogel template method for fabrication of homogeneous nano/microparticles [J].
Acharya, Ghanashyarn ;
Shin, Crystal S. ;
McDermott, Matthew ;
Mishra, Himanshu ;
Park, Haesun ;
Kwon, Ick Chan ;
Park, Kinam .
JOURNAL OF CONTROLLED RELEASE, 2010, 141 (03) :314-319
[2]   Cellular uptake of DNA block copolymer micelles with different shapes [J].
Alemdaroglu, Fikri E. ;
Alemdaroglu, N. Ceren ;
Langguth, Peter ;
Herrmann, Andreas .
MACROMOLECULAR RAPID COMMUNICATIONS, 2008, 29 (04) :326-329
[3]   Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants [J].
Almgren, M .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1508 (1-2) :146-163
[4]   Track etching technique in membrane technology [J].
Apel, P .
RADIATION MEASUREMENTS, 2001, 34 (1-6) :559-566
[5]   Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres [J].
Arnida ;
Malugin, Alexander ;
Ghandehari, Hamidreza .
JOURNAL OF APPLIED TOXICOLOGY, 2010, 30 (03) :212-217
[6]   Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration [J].
Arriagada, FJ ;
Osseo-Asare, K .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 211 (02) :210-220
[7]   Silica particles:: A novel drug-delivery system [J].
Barbé, C ;
Bartlett, J ;
Kong, LG ;
Finnie, K ;
Lin, HQ ;
Larkin, M ;
Calleja, S ;
Bush, A ;
Calleja, G .
ADVANCED MATERIALS, 2004, 16 (21) :1959-1966
[8]   Tuning Size and Sensing Properties in Colloidal Gold Nanostars [J].
Barbosa, Silvia ;
Agrawal, Amit ;
Rodriguez-Lorenzo, Laura ;
Pastoriza-Santos, Isabel ;
Alvarez-Puebla, Raman A. ;
Kornowski, Andreas ;
Weller, Horst ;
Liz-Marzan, Luis M. .
LANGMUIR, 2010, 26 (18) :14943-14950
[9]   A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats [J].
Boyd, Ben J. ;
Khoo, Shui-Mei ;
Whittaker, Darryl V. ;
Davey, Greg ;
Porter, Christopher J. H. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2007, 340 (1-2) :52-60
[10]   Nanoparticle and targeted systems for cancer therapy [J].
Brannon-Peppas, L ;
Blanchette, JO .
ADVANCED DRUG DELIVERY REVIEWS, 2004, 56 (11) :1649-1659