Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production

被引:839
作者
Cho, In Sun [2 ]
Chen, Zhebo [1 ]
Forman, Arnold J. [1 ]
Kim, Dong Rip [2 ]
Rao, Pratap M. [2 ]
Jaramillo, Thomas F. [1 ]
Zheng, Xiaolin [2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
新加坡国家研究基金会;
关键词
TiO2; nanorods; branched nanorods; photoanode; photoelectrochemical hydrogen production; charge transport/transfer; SENSITIZED SOLAR-CELLS; NANOTUBE ARRAYS; NANOWIRE ARRAYS; THIN-FILMS; WATER; GENERATION; HEMATITE; ABSORPTION; PHOTOLYSIS; ELECTRODE;
D O I
10.1021/nl2029392
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a hierarchically branched TiO2 nanorod structure that serves as a model architecture for efficient photoelectrochemical devices as it simultaneously offers a large contact area with the electrolyte, excellent light-trapping characteristics,, and a highly conductive pathway for charge carrier collection. Under Xenon lamp illumination (UV spectrum matched to AM 1.5G, 88 mW/cm(2) total power density), the branched TiO2 nanorod array produces a photocurrent density of 0.83 mA/cm(2) at 0.8 V versus reversible hydrogen electrode (RHE). The incident photon-to-current conversion efficiency reaches 67% at 380 nm with an applied bias of 0.6 V versus RHE, nearly two times higher than the bare nanorods without branches. The branches improve efficiency by means of (0 improved charge separation. and transport within the branches due to their small diameters, and (ii) a 4-fold increase in surface area which facilitates the hole transfer at the TiO2/electrolyte interface.
引用
收藏
页码:4978 / 4984
页数:7
相关论文
共 47 条
[21]   Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting [J].
Kleiman-Shwarsctein, Alan ;
Hu, Yong-Sheng ;
Forman, Arnold J. ;
Stucky, Galen D. ;
McFarland, Eric W. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (40) :15900-15907
[22]   Growth of Aligned Single-Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells [J].
Kumar, Akshay ;
Madaria, Anuj R. ;
Zhou, Chongwu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (17) :7787-7792
[23]   A 40 GS/s SiGe Track-and-Hold Amplifier [J].
Li, Xiangtao ;
Kuo, Wei-Min Lance ;
Cressler, John D. .
PROCEEDINGS OF THE 2008 BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING, 2008, :1-4
[24]   Hydrogen generation from photoelectrochemical water splitting based on nanomaterials [J].
Li, Yat ;
Zhang, Jin Zhong .
LASER & PHOTONICS REVIEWS, 2010, 4 (04) :517-528
[25]   Wet chemical route to hierarchical TiO2 nanodendrite/nanoparticle composite anodes for dye-sensitized solar cells [J].
Liao, Wen-Pin ;
Wu, Jih-Jen .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (25) :9255-9262
[26]   Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review [J].
Lin, Yongjing ;
Yuan, Guangbi ;
Liu, Rui ;
Zhou, Sa ;
Sheehan, Stafford W. ;
Wang, Dunwei .
CHEMICAL PHYSICS LETTERS, 2011, 507 (4-6) :209-215
[27]   Aqueous photoelectrochemistry of hematite nanorod array [J].
Lindgren, T ;
Wang, HL ;
Beermann, N ;
Vayssieres, L ;
Hagfeldt, A ;
Lindquist, SE .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 71 (02) :231-243
[28]   Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells [J].
Liu, Bin ;
Aydil, Eray S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) :3985-3990
[29]   Water photolysis with a cross-linked titanium dioxide nanowire anode [J].
Liu, Mingzhao ;
Snapp, Nathalie de Leon ;
Park, Hongkun .
CHEMICAL SCIENCE, 2011, 2 (01) :80-87
[30]   Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays [J].
Liu, Zhaoyue ;
Pesic, Batric ;
Raja, Krishnan S. ;
Rangaraju, Raghu R. ;
Misra, Mano .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (08) :3250-3257