Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production

被引:839
作者
Cho, In Sun [2 ]
Chen, Zhebo [1 ]
Forman, Arnold J. [1 ]
Kim, Dong Rip [2 ]
Rao, Pratap M. [2 ]
Jaramillo, Thomas F. [1 ]
Zheng, Xiaolin [2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
新加坡国家研究基金会;
关键词
TiO2; nanorods; branched nanorods; photoanode; photoelectrochemical hydrogen production; charge transport/transfer; SENSITIZED SOLAR-CELLS; NANOTUBE ARRAYS; NANOWIRE ARRAYS; THIN-FILMS; WATER; GENERATION; HEMATITE; ABSORPTION; PHOTOLYSIS; ELECTRODE;
D O I
10.1021/nl2029392
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a hierarchically branched TiO2 nanorod structure that serves as a model architecture for efficient photoelectrochemical devices as it simultaneously offers a large contact area with the electrolyte, excellent light-trapping characteristics,, and a highly conductive pathway for charge carrier collection. Under Xenon lamp illumination (UV spectrum matched to AM 1.5G, 88 mW/cm(2) total power density), the branched TiO2 nanorod array produces a photocurrent density of 0.83 mA/cm(2) at 0.8 V versus reversible hydrogen electrode (RHE). The incident photon-to-current conversion efficiency reaches 67% at 380 nm with an applied bias of 0.6 V versus RHE, nearly two times higher than the bare nanorods without branches. The branches improve efficiency by means of (0 improved charge separation. and transport within the branches due to their small diameters, and (ii) a 4-fold increase in surface area which facilitates the hole transfer at the TiO2/electrolyte interface.
引用
收藏
页码:4978 / 4984
页数:7
相关论文
共 47 条
[1]   Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects [J].
Bak, T ;
Nowotny, J ;
Rekas, M ;
Sorrell, CC .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (10) :991-1022
[2]   Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe [J].
Bang, Jin Ho ;
Kamat, Prashant V. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (12) :1970-1976
[3]   Photoelectrochemical studies of oriented nanorod thin films of hematite [J].
Beermann, N ;
Vayssieres, L ;
Lindquist, SE ;
Hagfeldt, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (07) :2456-2461
[4]  
BJORKSTEN U, 1994, CHEM MATER, V6, P858
[5]   PHOTOELECTROLYSIS AND PHYSICAL-PROPERTIES OF SEMICONDUCTING ELECTRODE WO3 [J].
BUTLER, MA .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (05) :1914-1920
[6]   WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production [J].
Chakrapani, Vidhya ;
Thangala, Jyothish ;
Sunkara, Mahendra K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (22) :9050-9059
[7]  
Chao Y.-C., 2011, ENERGY ENV
[8]   Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols [J].
Chen, Zhebo ;
Jaramillo, Thomas F. ;
Deutsch, Todd G. ;
Kleiman-Shwarsctein, Alan ;
Forman, Arnold J. ;
Gaillard, Nicolas ;
Garland, Roxanne ;
Takanabe, Kazuhiro ;
Heske, Clemens ;
Sunkara, Mahendra ;
McFarland, Eric W. ;
Domen, Kazunari ;
Miller, Eric L. ;
Turner, John A. ;
Dinh, Huyen N. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (01) :3-16
[9]   Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods [J].
Diedenhofen, Silke L. ;
Vecchi, Gabriele ;
Algra, Rienk E. ;
Hartsuiker, Alex ;
Muskens, Otto L. ;
Immink, George ;
Bakkers, Erik P. A. M. ;
Vos, Willem L. ;
Rivas, Jaime Gomez .
ADVANCED MATERIALS, 2009, 21 (09) :973-+
[10]   Challenges and Prospects of Nanopillar-Based Solar Cells [J].
Fan, Zhiyong ;
Ruebusch, Daniel J. ;
Rathore, Asghar A. ;
Kapadia, Rehan ;
Ergen, Onur ;
Leu, Paul W. ;
Javey, Ali .
NANO RESEARCH, 2009, 2 (11) :829-843