Fast Reactor Design using the Advanced Reactor Modeling Interface

被引:0
作者
Cheatham, Jesse [1 ]
Truong, Bao [1 ]
Touran, Nicholas [1 ]
Latta, Ryan [1 ]
Reed, Mark [2 ]
Petroski, Robert [1 ]
机构
[1] TerraPower LLC, Bellevue, WA 98005 USA
[2] MIT, Cambridge, MA 02139 USA
来源
PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING - 2013, VOL 2 | 2014年
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Advanced Reactor Modeling Interface (ARMI) code system has been developed at Terra Power to enable rapid and robust core design. ARMI is a modular modeling framework that loosely couples nuclear reactor simulations to provide high-fidelity system analysis in a highly automated fashion. Using a unified description of the reactor as input, a wide variety of independent modules run sequentially within ARMI. Some directly calculate results, while others write inputs for external simulation tools, execute them, and then process the results and update the state of the ARMI model. By using a standardized framework, a single design change, such as the modification of the fuel pin diameter, is seamlessly translated to every module involved in the full analysis; bypassing errorprone multi-analyst, multi-code approaches. Incorporating global flux and depletion solvers, subchannel thermalhydraulics codes, pin-level power and flux reconstruction methods, detailed fuel cycle and history tracking systems, finite element-based fuel performance coupling, reactivity coefficient generation, SASSYS-1/SAS4A transient modeling, control rod worth routines, and multi-objective optimization engines, ARMI allows "one click" steady-state and transient assessments throughout the reactor lifetime by a single user. This capability allows a user to work on the full-system design iterations required for reactor performance optimizations that has traditionally required the close attention of a multidisciplinary team. Through the ARMI framework, a single user can quickly explore a design concept and then consult the multi-disciplinary team for model validation and design improvements. This system is in full production use for reactor design at TerraPower, and some of its capabilities are demonstrated in this paper by looking at how design perturbations in fast reactor core assemblies affect steady-state performance at equilibrium as well as transient performance. Additionally, the pin-power profile is examined in the high flux gradient portion of the core to show the impact of the perturbations on pin peaking factors.
引用
收藏
页数:6
相关论文
共 10 条
[1]  
[Anonymous], CCC784 RSICC OAK RID
[2]  
CAHALAN J. E., 2012, ANLNE124, V1
[3]  
FRICANO J., 2011, P ICAPP2011 NIC FRAN
[4]  
Hejzlar P., 2013, P ICAPP 2013 JEJ ISL
[5]  
Hyung-Seok Lee, 1999, Journal of the Korean Nuclear Society, V31, P303
[6]  
OLSON A. P., 2002, ANLRERTRTM32
[7]  
Palmiotti G., 1995, VARIANT VARIATIONAL
[8]  
TOPPEL BJ, 1967, ANL7318
[9]  
TOURAN N., 2012, P ANS INT TOPL M ADV
[10]   RECONSTRUCTION OF PIN POWER AND BURNUP CHARACTERISTICS FROM NODAL CALCULATIONS IN HEXAGONAL-Z GEOMETRY [J].
YANG, WS ;
FINCK, PJ ;
KHALIL, H .
NUCLEAR SCIENCE AND ENGINEERING, 1992, 111 (01) :21-33