LIDAR system of CLF

被引:0
作者
Oku, D. [1 ]
Tomida, T. [1 ]
机构
[1] Univ Yamanashi, Interdisciplinary Grad Sch Med & Engn Mech Syst E, Kofu, Yamanashi 4008511, Japan
来源
INTERNATIONAL SYMPOSIUM ON THE RECENT PROGRESS OF ULTRA-HIGH ENERGY COSMIC RAY OBSERVATION | 2011年 / 1367卷
关键词
UHECR; Fluorescence; Atomspheric minitoring; LIDAR; Central Laser Facility;
D O I
10.1063/1.3628735
中图分类号
O59 [应用物理学];
学科分类号
摘要
UV fluorescence light generated by an air shower is scattered and lost along the path of propagation to the telescope. The cause of the main scattering is due to the atmospheric molecule and the aerosol. The calibration of a decrease in the photocount by scattering the atmosphere is very important as well as the calibration of the Fluorescence Detectors (FD). Two atmospheric scattered monitoring devices (LIDAR and CLF) have already been operating in the Telescope Array (TA) experiment. New LIDAR system is constructed at CLF and concentrated the advantage of two current atmospheric transparency monitoring devices. It reports on the upgrade of an existing atmospheric scattered monitoring device in TA in this paper.
引用
收藏
页码:161 / 164
页数:4
相关论文
共 50 条
  • [41] Large aperture telescope for advanced lidar system
    Simonetti, Francesca
    Marchi, Alessandro Zuccaro
    Gambicorti, Lisa
    Bratina, Vojko
    Mazzinghi, Piero
    OPTICAL ENGINEERING, 2010, 49 (07)
  • [42] Research of High Range Resolution Lidar System
    Wang Qiao
    Du Xiao-ping
    Zhao Ji-guang
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: LASER SENSING AND IMAGING AND BIOLOGICAL AND MEDICAL APPLICATIONS OF PHOTONICS SENSING AND IMAGING, 2011, 8192
  • [43] SC-LiDAR-SLAM: a Front-end Agnostic Versatile LiDAR SLAM System
    Kim, Giseop
    Yun, Seungsang
    Kim, Jeongyun
    Kim, Ayoung
    2022 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2022,
  • [44] The Scheimpflug Lidar Method
    Brydegaard, Mikkel
    Malmqvist, Elin
    Jansson, Samuel
    Larsson, Jim
    Torok, Sandra
    Zhao, Guangyu
    LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING 2017, 2017, 10406
  • [45] Rayleigh lidar system for middle atmosphere research in the arctic
    Thayer, JP
    Nielsen, NB
    Warren, RE
    Heinselman, CJ
    Sohn, J
    OPTICAL ENGINEERING, 1997, 36 (07) : 2045 - 2061
  • [46] Spaceborne scanning lidar system (SSLS) upgrade path
    Nimelman, M.
    Tripp, J.
    Allen, A.
    Hiemstra, D. M.
    McDonald, S. A.
    SENSORS, AND COMMAND, CONTROL, COMMUNICATIONS, AND INTELLIGENCE (C31)TECHNOLOGIES FOR HOMELAND SECURITY AND HOMELAND DEFENSE V, 2006, 6201
  • [47] LiDAR-based localization system for kidnapped robots
    Lasguignes, Thibaud
    Gobin, Guillaume
    Stasse, Olivier
    2023 SEVENTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC 2023, 2023, : 35 - 42
  • [48] Measurement of methane content in the atmosphere by OPO lidar system
    Romanovskii, O. A.
    Sadovnikov, S. A.
    Kharchenko, O. V.
    Yakovlev, S. V.
    25TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2019, 11208
  • [49] REMOTE BIODETECTION PERFORMANCE OF A PULSED MONOSTATIC LIDAR SYSTEM
    YEE, E
    KOSTENIUK, PR
    ROY, G
    EVANS, BTN
    APPLIED OPTICS, 1992, 31 (15): : 2900 - 2913
  • [50] Blind-Spot Monitoring System using Lidar
    Pawar K.S.
    Teli S.N.
    Shetye P.
    Shetty S.
    Satam V.
    Sahani A.
    Journal of The Institution of Engineers (India): Series C, 2022, 103 (05) : 1071 - 1082