On the chaotic dynamics in two coupled partial differential equations for evolution of surface plasmon polaritons

被引:4
作者
Burov, D. A. [1 ]
Evstigneev, N. M. [1 ]
Magnitskii, N. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Syst Anal, Moscow, Russia
[2] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow, Russia
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 46卷
关键词
Surface plasmon polaritons; Hopf bifurcation; Period-doubling; Bifurcation; Pseudo-spectral method; NONLINEAR SCHRODINGER-EQUATION; STIMULATED-EMISSION; NUMERICAL-SOLUTION; PAINLEVE ANALYSIS; WAVE-GUIDES; GAIN; TIME; SOLITONS; COMPENSATION; PROPAGATION;
D O I
10.1016/j.cnsns.2016.10.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper two coupled (linear and nonlinear) equations are studied. These equations describe dynamics of surface plasmon polaritons at dielectric-metal-dielectric surfaces. Previously constructed bifurcation diagram of an analytical spatially homogeneous solution is refined and verified by direct simulations. Further research is conducted using numerical scheme based on spectral method. The 2/3 de-aliasing rule is used to cope with nonlinearity along with pseudo-spectral approach. An Andronov-Hopf bifurcation of a stable limit cycle and a period-doubling bifurcation of a stable limit torus were found. Floquet theory was applied to verify bifurcations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 65 条
[1]   A self-consistent simulation of nonlinear surface plasmon polaritons in a linear-metal/nonlinear slab waveguide [J].
Ajith, R. ;
Mathew, Vincent .
OPTICS COMMUNICATIONS, 2015, 346 :183-187
[2]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[3]   Observation of Stimulated Emission of Surface Plasmon Polaritons [J].
Ambati, Muralidhar ;
Nam, Sung Hyun ;
Ulin-Avila, Erick ;
Genov, Dentcho A. ;
Bartal, Guy ;
Zhang, Xiang .
NANO LETTERS, 2008, 8 (11) :3998-4001
[4]   NUMERICAL METHODS FOR A CLASS OF GENERALIZED NONLINEAR SCHRODINGER EQUATIONS [J].
Amiranashvili, Shalva ;
Ciegis, Raimondas ;
Radziunas, Mindaugas .
KINETIC AND RELATED MODELS, 2015, 8 (02) :215-234
[5]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[6]  
[Anonymous], 2003, Optical Solitons
[7]  
[Anonymous], 2003, INT SERIES MONOGRAPH
[8]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[9]   Absorbing boundary conditions for the two-dimensional Schrodinger equation with an exterior potential [J].
Antoine, Xavier ;
Besse, Christophe ;
Klein, Pauline .
NUMERISCHE MATHEMATIK, 2013, 125 (02) :191-223
[10]   ABSORBING BOUNDARY CONDITIONS FOR THE TWO-DIMENSIONAL SCHRODINGER EQUATION WITH AN EXTERIOR POTENTIAL. PART I: CONSTRUCTION AND A PRIORI ESTIMATES [J].
Antoine, Xavier ;
Besse, Christophe ;
Klein, Pauline .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (10)