A promising PEO/LAGP. hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries

被引:219
作者
Zhao, Yanran [1 ,2 ]
Huang, Zhen [1 ]
Chen, Shaojie [1 ]
Chen, Bo [1 ]
Yang, Jing [1 ]
Zhang, Qiang [1 ]
Ding, Fei [2 ]
Chen, Yanhua [1 ,3 ]
Xu, Xiaoxiong [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Tianjin Inst Power Sources, Tianjin 300381, Peoples R China
[3] Zhejiang Fash Inst Technol, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid electrolyte; Polyethylene oxide; LAGP; Simple preparation; All-solid-state lithium battery; CONDUCTING GLASS-CERAMICS; POLYMER ELECTROLYTES; POLYETHER; STABILITY; FILLER; SYSTEM;
D O I
10.1016/j.ssi.2016.07.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Four types of Li1.5Al0.5Ge1.5(PO4)(3) (LAGP) with different particle sizes are selected as active fillers incorporated into polyethylene oxide (PEO) matrix to fabricate PEO/LAGP hybrid electrolytes at drying room. The results show that LAGP particles have a positive effect on the ionic conductivity, lithium ion transference number, electrochemical stabilities and mechanical properties. Among the PEO/LAGP hybrid electrolytes, the PEO-20%LAGP-I hybrid electrolyte exhibits a maximum ionic conductivity of 6.76 x 10(-4) S cm(-1) and an electrochemical window of 0-53 V at 60 degrees C. The possible reasons for conductivities improving are discussed through characterizing the phase transition behaviors of electrolytes. All-solid-state battery LiFePO4/Li is fabricated and presents fascinating electrochemical performance with high capacity retention (close to 90% after 50 cycles at 60 degrees C) and attractive capacities of 166, 155, 143 and 108 mAh g(-1) at current rates of 0.1, 0.2, 0.5 and 1 C, respectively. This work provides a promising PEO/IAGP hybrid electrolyte prepared by a simple method which can be manufactured easily in industry scale. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 30 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Molecular dynamics modeling the Li-PolystyreneTFSI/PEO blend
    Brandell, Daniel
    Kasemaegi, Heiki
    Tamm, Tarmo
    Aabloo, Alvo
    [J]. SOLID STATE IONICS, 2014, 262 : 769 - 773
  • [3] How Does Nanoscale Crystalline Structure Affect Ion Transport in Solid Polymer Electrolytes?
    Cheng, Shan
    Smith, Derrick M.
    Li, Christopher Y.
    [J]. MACROMOLECULES, 2014, 47 (12) : 3978 - 3986
  • [4] Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes
    Croce, F
    Persi, L
    Scrosati, B
    Serraino-Fiory, F
    Plichta, E
    Hendrickson, MA
    [J]. ELECTROCHIMICA ACTA, 2001, 46 (16) : 2457 - 2461
  • [5] Nanocomposite polymer electrolytes for lithium batteries
    Croce, F
    Appetecchi, GB
    Persi, L
    Scrosati, B
    [J]. NATURE, 1998, 394 (6692) : 456 - 458
  • [6] ELECTROCHEMICAL MEASUREMENT OF TRANSFERENCE NUMBERS IN POLYMER ELECTROLYTES
    EVANS, J
    VINCENT, CA
    BRUCE, PG
    [J]. POLYMER, 1987, 28 (13) : 2324 - 2328
  • [7] Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5
    Fu, J
    [J]. SOLID STATE IONICS, 1997, 104 (3-4) : 191 - 194
  • [8] Structure and Mobility of PEO/LiClO4 Solid Polymer Electrolytes Filled with Al2O3 Nanoparticles
    Fullerton-Shirey, Susan K.
    Maranas, Janna K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (20) : 9196 - 9206
  • [9] New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4
    Hu, Linfeng
    Tang, Zilong
    Zhang, Zhongtai
    [J]. JOURNAL OF POWER SOURCES, 2007, 166 (01) : 226 - 232
  • [10] First principles modelling of amorphous polymer electrolytes:: Li+-PEO, Li+-PEI, and Li+-PES complexes
    Johansson, P
    [J]. POLYMER, 2001, 42 (09) : 4367 - 4373