Bimetallic Cu-Zn Catalysts for Electrochemical CO2 Reduction: Phase-Separated versus Core-Shell Distribution

被引:89
作者
Wan, Lili [1 ]
Zhang, Xilin [2 ]
Cheng, Jinshui [1 ]
Chen, Rong [1 ]
Wu, Linxiao [1 ]
Shi, Jiawen [1 ]
Luo, Jingshan [1 ]
机构
[1] Nankai Univ, Minist Educ,Engn Res Ctr Thin Film Photoelect Tec, Renewable Energy Convers & Storage Ctr, Inst Photoelect Thin Film Devices & Technol,Key L, Tianjin 300350, Peoples R China
[2] Henan Normal Univ, Sch Phys, Henan Key Lab Photovolta Mat, Xinxiang 453007, Henan, Peoples R China
基金
中国博士后科学基金;
关键词
electrochemical CO2 reduction; bimetallic Cu-Zn catalyst; element spatial distribution; phase separation; structure-activity relation; CARBON-DIOXIDE; AQUEOUS CO2; NANOPARTICLES; CONVERSION; SYNGAS; OXIDE;
D O I
10.1021/acscatal.1c05272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical CO2 reduction to fuels and chemicals is considered as one of the most important technologies to reach carbon neutrality. Bimetallic Cu-Zn materials have been proved as effective catalysts for electrochemical CO2 reduction. However, their structure-activity relation remains indistinct. Herein, we prepared two types of Cu-Zn bimetallic catalysts with core-shell and phase-separated structure distributions and studied their electrochemical CO2 reduction performance in detail. Interestingly, the phase-separated sample exhibited much higher activity and stability than the core-shell sample for reducing CO2 to CO, with a faradic efficiency up to 94% and stability beyond 15 h. The density functional theory calculation revealed that the phase-separated sample exhibited a lower energy barrier to form the *COOH intermediate and a more thermodynamically stable state than the core-shell sample. Our work paves an alternative way to design highly active and stable catalyst for electrochemical CO2 reduction by tuning the element spatial distribution.
引用
收藏
页码:2741 / 2748
页数:8
相关论文
共 31 条
[1]   Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment [J].
Artz, Jens ;
Mueller, Thomas E. ;
Thenert, Katharina ;
Kleinekorte, Johanna ;
Meys, Raoul ;
Sternberg, Andre ;
Bardow, Andre ;
Leitner, Walter .
CHEMICAL REVIEWS, 2018, 118 (02) :434-504
[2]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[3]   Mass Transport Control by Surface Graphene Oxide for Selective CO Production from Electrochemical CO2 Reduction [J].
Dang Le Tri Nguyen ;
Lee, Chan Woo ;
Na, Jonggeol ;
Kim, Min-Cheol ;
Nguyen Dien Kha Tu ;
Lee, Si Young ;
Sa, Young Jin ;
Won, Da Hye ;
Oh, Hyung-Suk ;
Kim, Heesuk ;
Min, Byoung Koun ;
Han, Sang Soo ;
Lee, Ung ;
Hwang, Yun Jeong .
ACS CATALYSIS, 2020, 10 (05) :3222-+
[4]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[5]   Electrocatalytic Alloys for CO2 Reduction [J].
He, Jingfu ;
Johnson, Noah J. J. ;
Huang, Aoxue ;
Berlinguette, Curtis P. .
CHEMSUSCHEM, 2018, 11 (01) :48-57
[6]   Syngas production from electrochemical reduction of CO2: current status and prospective implementation [J].
Hernandez, Simelys ;
Farkhondehfal, M. Amin ;
Sastre, Francesc ;
Makkee, Michiel ;
Saracco, Guido ;
Russo, Nunzio .
GREEN CHEMISTRY, 2017, 19 (10) :2326-2346
[7]   Operando Insight into the Correlation between the Structure and Composition of CuZn Nanoparticles and Their Selectivity for the Electrochemical CO2 Reduction [J].
Jeon, Hyo Sang ;
Timoshenko, Janis ;
Scholten, Fabian ;
Sinev, Ilya ;
Herzog, Antonia ;
Haase, Felix T. ;
Roldan Cuenya, Beatriz .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (50) :19879-19887
[8]   Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design [J].
Kibria, Md Golam ;
Edwards, Jonathan P. ;
Gabardo, Christine M. ;
Cao-Thang Dinh ;
Seifitokaldani, Ali ;
Sinton, David ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2019, 31 (31)
[9]   Electrochemical Activation of CO2 through Atomic Ordering Transformations of AuCu Nanoparticles [J].
Kim, Dohyung ;
Xie, Chenlu ;
Becknell, Nigel ;
Yu, Yi ;
Karamad, Mohammadreza ;
Chan, Karen ;
Crumlin, Ethan J. ;
Norskov, Jens K. ;
Yang, Peidong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (24) :8329-8336
[10]   Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces [J].
Kuhl, Kendra P. ;
Hatsukade, Toru ;
Cave, Etosha R. ;
Abram, David N. ;
Kibsgaard, Jakob ;
Jaramillo, Thomas F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (40) :14107-14113