Characterization of the positivity of the density matrix in terms of the coherence vector representation

被引:193
作者
Byrd, MS [1 ]
Khaneja, N [1 ]
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 06期
关键词
D O I
10.1103/PhysRevA.68.062322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A parametrization of the density operator, a coherence vector representation, which uses a basis of orthogonal, traceless, Hermitian matrices is discussed. Using this parametrization we find the region of permissible vectors which represent a density operator. The inequalities which specify the region are shown to involve the Casimir invariants of the group. In particular cases, this allows the determination of degeneracies in the spectrum of the operator. The identification of the Casimir invariants also provides a method of constructing quantities which are invariant under local unitary operations. Several examples are given which illustrate the constraints provided by the positivity requirements and the utility of the coherence vector parametrization.
引用
收藏
页数:13
相关论文
共 30 条
[1]  
[Anonymous], 1998, HDB MATH
[2]   Variational characterizations of separability and entanglement of formation [J].
Audenaert, K ;
Verstraete, F ;
De Moor, B .
PHYSICAL REVIEW A, 2001, 64 (05) :13
[3]  
BARNUM H, QUANTPH0103155
[5]   Bures measures over the spaces of two- and three-dimensional density matrices [J].
Byrd, MS ;
Slater, PB .
PHYSICS LETTERS A, 2001, 283 (3-4) :152-156
[6]  
BYRD MS, QUANTPH9810084
[7]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[8]   Experimental realization of the quantum universal NOT gate [J].
De Martini, F ;
Buzek, V ;
Sciarrino, F ;
Sias, C .
NATURE, 2002, 419 (6909) :815-818
[9]  
ERCOLESSI E, QUANTPH0105007
[10]  
Fuchs J., 1997, SYMMETRIES LIE ALGEB