Sectorial Extensions, via Laplace Transforms, in Ultraholomorphic Classes Defined by Weight Functions

被引:23
作者
Jimenez-Garrido, Javier [1 ,2 ]
Sanz, Javier [1 ,2 ]
Schindl, Gerhard [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dept Algebra Anal Matemat Geometria & Topol, Paseo Belen 7, E-47011 Valladolid, Spain
[2] Univ Valladolid, Inst Invest Matemat IMUVA, Valladolid, Spain
基金
奥地利科学基金会;
关键词
Ultraholomorphic classes; weight sequences; functions and matrices; Legendre conjugates; Laplace transform; extension operators; indices of O-regular variation; ASYMPTOTIC BOREL MAP; ULTRADIFFERENTIABLE FUNCTIONS; SURJECTIVITY; SEQUENCES; OPERATORS; THEOREM;
D O I
10.1007/s00025-018-0951-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove several extension theorems for Roumieu ultraholomorphic classes of functions in sectors of the Riemann surface of the logarithm which are defined by means of a weight function or weight matrix. Our main aim is to transfer the results of V. Thilliez from the weight sequence case to these different, or more general, frameworks. The technique rests on the construction of suitable kernels for a truncated Laplace-like integral transform, which provides the solution without resorting to Whitney-type extension results for ultradifferentiable classes. As a byproduct, we obtain an extension in a mixed weight-sequence setting in which assumptions on the sequence are minimal.
引用
收藏
页数:44
相关论文
共 42 条
[1]  
[Anonymous], 1978, Aste'risque, Soc. Math.
[2]  
Bari N.K., 1956, Trudy Mosk. Mat. Obshch., V5, P483
[3]  
Beurling A, 1972, ACTA MATH-DJURSHOLM, V128, P153, DOI 10.1007/BF02392164
[4]   OPERATORS ON FOCK-TYPE AND WEIGHTED SPACES OF ENTIRE FUNCTIONS [J].
Blasco, Oscar .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 59 (02) :175-189
[5]  
BONET J, 1992, N-HOLLAND M, V170, P97
[6]   WHITNEY EXTENSION THEOREM FOR NONQUASIANALYTIC CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS [J].
BONET, J ;
BRAUN, RW ;
MEISE, R ;
TAYLOR, BA .
STUDIA MATHEMATICA, 1991, 99 (02) :155-184
[7]   A comparison of two different ways to define classes of ultradifferentiable functions [J].
Bonet, Jose ;
Meise, Reinhold ;
Melikhov, Sergej N. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (03) :425-444
[8]  
Braun R.W., 1990, RESULTS MATH, V17, P206, DOI DOI 10.1007/BF03322459
[9]   SURJECTIVITY OF RESTRICTION APPLICATION WITH A COMPACT SET IN CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS [J].
CHAUMAT, J ;
CHOLLET, AM .
MATHEMATISCHE ANNALEN, 1994, 298 (01) :7-40
[10]  
Debrouwere A., 2014, THESIS