Predicting growth of the healthy infant using a genome scale metabolic model

被引:20
作者
Nilsson, Avlant [1 ]
Mardinoglu, Adil [1 ]
Nielsen, Jens [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Biol & Biol Engn, SE-41296 Gothenburg, Sweden
[2] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2970 Horsholm, Denmark
关键词
BREAST-FED INFANTS; TOTAL-ENERGY EXPENDITURE; FATTY-ACID-COMPOSITION; BODY-COMPOSITION; LINOLEATE DEFICIENCY; COPPER DEFICIENCY; PHYSICAL-ACTIVITY; REQUIREMENTS; PROTEIN; WEIGHT;
D O I
10.1038/s41540-017-0004-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An estimated 165 million children globally have stunted growth, and extensive growth data are available. Genome scale metabolic models allow the simulation of molecular flux over each metabolic enzyme, and are well adapted to analyze biological systems. We used a human genome scale metabolic model to simulate the mechanisms of growth and integrate data about breast-milk intake and composition with the infant's biomass and energy expenditure of major organs. The model predicted daily metabolic fluxes from birth to age 6 months, and accurately reproduced standard growth curves and changes in body composition. The model corroborates the finding that essential amino and fatty acids do not limit growth, but that energy is the main growth limiting factor. Disruptions to the supply and demand of energy markedly affected the predicted growth, indicating that elevated energy expenditure may be detrimental. The model was used to simulate the metabolic effect of mineral deficiencies, and showed the greatest growth reduction for deficiencies in copper, iron, and magnesium ions which affect energy production through oxidative phosphorylation. The model and simulation method were integrated to a platform and shared with the research community. The growth model constitutes another step towards the complete representation of human metabolism, and may further help improve the understanding of the mechanisms underlying stunting.
引用
收藏
页数:9
相关论文
共 68 条
[1]   Function, structure, and biogenesis of mitochondrial ATP synthase [J].
Ackerman, SH ;
Tzagoloff, A .
PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY, VOL 80, 2005, 80 :95-133
[2]   The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum [J].
Agren, Rasmus ;
Liu, Liming ;
Shoaie, Saeed ;
Vongsangnak, Wanwipa ;
Nookaew, Intawat ;
Nielsen, Jens .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (03)
[3]   Obesity as an Emerging Risk Factor for Iron Deficiency [J].
Aigner, Elmar ;
Feldman, Alexandra ;
Datz, Christian .
NUTRIENTS, 2014, 6 (09) :3587-3600
[4]  
[Anonymous], ADV NUTR RES
[5]  
[Anonymous], 2002, Nutrient adequacy of exclusive breastfeeding for the term infnat during the first six months of life
[6]  
[Anonymous], NUTR INFANT PROBLEMS
[7]  
[Anonymous], NEONATOLOGY
[8]  
[Anonymous], BT ASPECTS PRAEMATUR
[9]   Activities at the Universal Protein Resource (UniProt) [J].
Apweiler, Rolf ;
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Casanova, Elisabet Barrera ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chan, Wei Mun ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightingale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Corbett, Matt .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D191-D198
[10]   A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology [J].
Bordbar, Aarash ;
Feist, Adam M. ;
Usaite-Black, Renata ;
Woodcock, Joseph ;
Palsson, Bernhard O. ;
Famili, Iman .
BMC SYSTEMS BIOLOGY, 2011, 5