What Limits the Intrinsic Mobility of Electrons and Holes in Two Dimensional Metal Dichalcogenides?

被引:146
作者
Cheng, Long
Liu, Yuanyue [1 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
CARRIER MOBILITY; SEMICONDUCTOR; PREDICTION; LAYERS;
D O I
10.1021/jacs.8b07871
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional (2D) metal dichalcogenides (MX2) are the most common type of 2D semiconductors and have shown great potential for a wide range of chemical and physical applications. However, they are limited by a low electron/hole mobility, which has been recognized as one of the major challenges impeding their further developments, and urges efforts to understand the mobility-limiting factors and discovery of higher-mobility alternatives. Here using density functional perturbation theory and Wannier interpolation of the electron-phonon matrix to study a wide range of MX2, we find that the intrinsic carrier mobility, in contrast to common belief, neither correlates with the effective mass nor can be assessed by the widely used deformation potential theory; instead it is limited by the longitudinal optical (LO) phonon scattering for most MX2, while for MoS2 and WS2, the mobility is limited by the longitudinal acoustic (LA) phonon scattering. Furthermore, we find that the LO scattering strength is strongly correlated with the magnitude of the Born effective charge, suggesting that the carrier transport is greatly affected by the electric polarization change induced by the atomic vibration. This finding enables us to use the Born effective charge to rapidly screen the 2D MX2 database for high-mobility semiconductor candidates. Our work reveals the underlying factors governing the intrinsic carrier mobility of 2D MX2, offers a practical descriptor for discovering high-mobility candidates, and serves as a paradigm to accurately assess the carrier mobility in 2D semiconductors, thereby paving critical steps toward the development of 2D materials.
引用
收藏
页码:17895 / 17900
页数:6
相关论文
共 43 条
[1]   Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure [J].
Ataca, C. ;
Sahin, H. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8983-8999
[2]   DEFORMATION POTENTIALS AND MOBILITIES IN NON-POLAR CRYSTALS [J].
BARDEEN, J ;
SHOCKLEY, W .
PHYSICAL REVIEW, 1950, 80 (01) :72-80
[3]   First-principles dynamics of electrons and phonons [J].
Bernardi, Marco .
EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (11)
[4]   Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons [J].
Cai, Yongqing ;
Zhang, Gang ;
Zhang, Yong-Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (17) :6269-6275
[5]   Phosphorene: from theory to applications [J].
Carvalho, Alexandra ;
Wang, Min ;
Zhu, Xi ;
Rodin, Aleksandr S. ;
Su, Haibin ;
Castro Neto, Antonio H. .
NATURE REVIEWS MATERIALS, 2016, 1 (11)
[6]   Proton-Conductor-Gated MoS2 Transistors with Room Temperature Electron Mobility of >100 cm2 V-1 s-1 [J].
Choi, Yongsuk ;
Kim, Hyunwoo ;
Yang, Jeehye ;
Shin, Seung Won ;
Um, Soong Ho ;
Lee, Sungjoo ;
Kang, Moon Sung ;
Cho, Jeong Ho .
CHEMISTRY OF MATERIALS, 2018, 30 (14) :4527-4535
[7]   Titanium Trisulfide Monolayer: Theoretical Prediction of a New Direct-Gap Semiconductor with High and Anisotropic Carrier Mobility [J].
Dai, Jun ;
Zeng, Xiao Cheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (26) :7572-7576
[8]   Van der Waals Epitaxial Growth of Atomic Layered HfS2 Crystals for Ultrasensitive Near-Infrared Phototransistors [J].
Fu, Lei ;
Wang, Feng ;
Wu, Bin ;
Wu, Nian ;
Huang, Wei ;
Wang, Hanlin ;
Jin, Chuanhong ;
Zhuang, Lin ;
He, Jun ;
Fu, Lei ;
Liu, Yunqi .
ADVANCED MATERIALS, 2017, 29 (32)
[9]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[10]   Electron-phonon interactions from first principles [J].
Giustino, Feliciano .
REVIEWS OF MODERN PHYSICS, 2017, 89 (01)