MAXIMUM A POSTERIORI BASED REGULARIZATION PARAMETER SELECTION

被引:0
|
作者
Panahi, Ashkan [1 ]
Viberg, Mats [1 ]
机构
[1] Chalmers Univ Technol, Dept Signals & Syst, Gothenburg, Sweden
关键词
Linear regression; Sparse analysis; DOA estimation; LASSO; Model order selection;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The l(1) norm regularized least square technique has been proposed as an efficient method to calculate sparse solutions. However, the choice of the regularization parameter is still an unsolved problem, especially when the number of nonzero elements is unknown. In this paper we first design different ML estimators by interpreting the l(1) norm regularization as a MAP estimator with a Laplacian model for data. We also utilize the MDL criterion to decide on the regularization parameter. The performance of these new methods are evaluated in the context of estimating the Directions Of Arrival (DOA) for the simulated data and compared. The simulations show that the performance of the different forms of the MAP estimator are approximately equal in the one snapshot case, where MDL may not work. But for the multiple snapshot case both methods can be used.
引用
收藏
页码:2452 / 2455
页数:4
相关论文
共 50 条
  • [1] Regularization Parameter Selection in Maximum a Posteriori Iterative Reconstruction for Digital Breast Tomosynthesis
    Jerebko, Anna K.
    Kowarschik, Markus
    Mertelmeier, Thomas
    DIGITAL MAMMOGRAPHY, 2010, 6136 : 548 - 555
  • [2] An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection
    Maass, P
    Pereverzev, SV
    Ramlau, R
    Solodky, SG
    NUMERISCHE MATHEMATIK, 2001, 87 (03) : 485 - 502
  • [3] An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection
    Peter Maaß
    Sergei V. Pereverzev
    Ronny Ramlau
    Sergei G. Solodky
    Numerische Mathematik, 2001, 87 : 485 - 502
  • [4] SURE-Based Regularization Parameter Selection for TomoSAR Imaging via Maximum-Likelihood
    Serafin Garcia, Sergio
    Campo Becerra, Martin del Gustavo
    Ortega Cisneros, Susana
    Reigber, Andreas
    2020 21ST INTERNATIONAL RADAR SYMPOSIUM (IRS 2020), 2020, : 270 - 275
  • [5] Maximum a Posteriori (MAP) algorithm with iterative statistical regularization
    Denisova, NV
    2002 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-3, 2003, : 1246 - 1250
  • [6] Complexity Estimates for Severely Ill-posed Problems under A Posteriori Selection of Regularization Parameter
    Solodky, Sergii G.
    Myleiko, Ganna L.
    Semenova, Evgeniya V.
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (03) : 283 - 299
  • [7] A class of a posteriori parameter choice rules for filter-based regularization schemes
    Sayana, K. J.
    Reddy, G. D.
    NUMERICAL ALGORITHMS, 2025, 98 (02) : 767 - 795
  • [8] Parameter selection for HOTV regularization
    Sanders, Toby
    APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 1 - 9
  • [9] On the Selection of the Regularization Parameter in Stacking
    Tadayoshi Fushiki
    Neural Processing Letters, 2021, 53 : 37 - 48
  • [10] On the Selection of the Regularization Parameter in Stacking
    Fushiki, Tadayoshi
    NEURAL PROCESSING LETTERS, 2021, 53 (01) : 37 - 48