Strongly squeezed states at 532 nm based on frequency up-conversion

被引:18
作者
Baune, Christoph [1 ,2 ,3 ,4 ]
Gniesmer, Jan [3 ,4 ,5 ]
Schoenbeck, Axel [1 ,2 ,3 ,4 ]
Vollmer, Christina E. [3 ,4 ]
Fiurasek, Jaromir [6 ]
Schnabel, Roman [1 ,2 ,3 ,4 ]
机构
[1] Univ Hamburg, Inst Laserphys, D-22761 Hamburg, Germany
[2] Univ Hamburg, Zentrum Opt Quantentechnol, D-22761 Hamburg, Germany
[3] Leibniz Univ Hannover, Inst Gravitat Phys, D-30167 Hannover, Germany
[4] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-30167 Hannover, Germany
[5] Leibniz Univ Hannover, Inst Festkorperphys, D-30167 Hannover, Germany
[6] Palacky Univ, Dept Opt, Olomouc 77146, Czech Republic
关键词
SINGLE PHOTONS; QUANTUM; LIGHT;
D O I
10.1364/OE.23.016035
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum metrology utilizes nonclassical states to improve the precision of measurement devices. In this context, strongly squeezed vacuum states of light have proven to be a useful resource. They are typically produced by spontaneous parametric down-conversion, but have not been generated at shorter wavelengths so far, as suitable nonlinear materials do not exist. Here, we report on the generation of strongly squeezed vacuum states at 532 nm with 5.5 dB noise suppression by means of frequency up-conversion from the telecommunication wavelength of 1550 nm. The up-converted states are employed in a model Mach-Zehnder interferometer to illustrate their use in quantum metrology. (C) 2015 Optical Society of America
引用
收藏
页码:16035 / 16041
页数:7
相关论文
共 27 条
[1]  
Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/nphoton.2013.177, 10.1038/NPHOTON.2013.177]
[2]  
Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/NPHYS2083, 10.1038/nphys2083]
[3]   Quantum non-Gaussianity of frequency up-converted single photons [J].
Baune, Christoph ;
Schoenbeck, Axel ;
Samblowski, Aiko ;
Fiurasek, Jaromir ;
Schnabel, Roman .
OPTICS EXPRESS, 2014, 22 (19) :22808-22816
[4]   SQUEEZING IN FIBERS WITH OPTICAL PULSES [J].
BERGMAN, K ;
HAUS, HA .
OPTICS LETTERS, 1991, 16 (09) :663-665
[5]   Realization of a Monolithic High-Reflectivity Cavity Mirror from a Single Silicon Crystal [J].
Brueckner, Frank ;
Friedrich, Daniel ;
Clausnitzer, Tina ;
Britzger, Michael ;
Burmeister, Oliver ;
Danzmann, Karsten ;
Kley, Ernst-Bernhard ;
Tuennermann, Andreas ;
Schnabel, Roman .
PHYSICAL REVIEW LETTERS, 2010, 104 (16)
[6]   SQUEEZING OF INTRACAVITY AND TRAVELING-WAVE LIGHT FIELDS PRODUCED IN PARAMETRIC AMPLIFICATION [J].
COLLETT, MJ ;
GARDINER, CW .
PHYSICAL REVIEW A, 1984, 30 (03) :1386-1391
[7]   Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection [J].
Eberle, Tobias ;
Steinlechner, Sebastian ;
Bauchrowitz, Joeran ;
Haendchen, Vitus ;
Vahlbruch, Henning ;
Mehmet, Moritz ;
Mueller-Ebhardt, Helge ;
Schnabel, Roman .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[8]   OPTICAL PARAMETRIC OSCILLATOR FREQUENCY TUNING AND CONTROL [J].
ECKARDT, RC ;
NABORS, CD ;
KOZLOVSKY, WJ ;
BYER, RL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (03) :646-667
[9]   Analysis of counting measurements on narrowband frequency up-converted single photons and the influence of heralding detector dead time [J].
Fiurasek, Jaromir ;
Baune, Christoph ;
Schonbeck, Axel ;
Schnabel, Roman .
PHYSICAL REVIEW A, 2015, 91 (01)
[10]   First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory [J].
Grote, H. ;
Danzmann, K. ;
Dooley, K. L. ;
Schnabel, R. ;
Slutsky, J. ;
Vahlbruch, H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (18)