Representation growth of the classical lie algebras

被引:2
作者
Augarten, Tal [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
关键词
Lie algebra; representation growth; irreducible representations;
D O I
10.1080/00927872.2020.1729364
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a simple complex Lie algebra with root system R of rank r. Larsen and Lubotzky observed that the number of irreducible representations of of degree <= n grows roughly like n. This paper makes a closer investigation of this phenomenon for algebras of type A, B, C, and D, giving explicit upper and lower bounds whose ratio depends only on r.
引用
收藏
页码:3099 / 3108
页数:10
相关论文
共 3 条
[1]  
Fulton William, 2004, Graduate Texts in Mathematics, V129, P4
[2]   LOW DEGREE REPRESENTATIONS OF SIMPLE LIE GROUPS [J].
Guralnick, Robert ;
Larsen, Michael ;
Manack, Corey .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) :1823-1834
[3]   Representation growth of linear groups [J].
Larsen, Michael ;
Lubotzky, Alexander .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2008, 10 (02) :351-390