Existence tests for solutions of nonlinear equations using Borsuk's theorem

被引:16
作者
Frommer, A [1 ]
Lang, B [1 ]
机构
[1] Berg Univ Wuppertal, Fac Math & Sci, Dept Math, D-42097 Wuppertal, Germany
关键词
nonlinear systems; Miranda's existence theorem; Borsuk's theorem; computational verification; interval analysis;
D O I
10.1137/S0036142903438148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how interval arithmetic can be used in connection with Borsuk's theorem to computationally prove the existence of a solution of a system of nonlinear equations. It turns out that this new test, which can be checked computationally in several different ways, is more general than an existing test based on Miranda's theorem in the sense that it is successful for a larger set of situations. A numerical example is included.
引用
收藏
页码:1348 / 1361
页数:14
相关论文
共 15 条
[1]  
Alefeld G., 1983, INTRO INTERVAL COMPU
[2]  
ALEFELD G, 2001, COMPUT S, V15, P21
[3]  
Alefeld O, 2004, ELECTRON T NUMER ANA, V17, P102
[4]  
Berz M., 1998, Reliable Computing, V4, P83, DOI 10.1023/A:1009958918582
[5]  
BERZ M, 2002, MSUHEP20703 MICH STA
[6]  
Borsuk K., 1933, Fundamenta Mathematicae, V20, P177, DOI DOI 10.4064/FM-20-1-177-190
[7]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[8]   A comparison of the Moore and Miranda existence tests [J].
Frommer, A ;
Lang, B ;
Schnurr, M .
COMPUTING, 2004, 72 (3-4) :349-354
[9]  
Kearfott R.B., 1996, RIGOROUS GLOBAL SEAR
[10]  
Miranda C., 1940, Boll Un Mat Ital, V3, P5