A 3D free-standing thin film based on N, P-codoped hollow carbon fibers embedded with MoP quantum dots as high efficient oxygen electrode for Li-O2 batteries

被引:62
作者
Wei, Minghui [1 ]
Li, Bao [2 ]
Jin, Chao [1 ,3 ]
Ni, Yichen [1 ]
Li, Cong [1 ]
Pan, Xiaowei [1 ]
Sun, Jiawen [1 ]
Yang, Chenghao [3 ]
Yang, Ruizhi [1 ]
机构
[1] Soochow Univ, Coll Energy, Soochow Inst Energy & Mat Innovat, Suzhou 215006, Peoples R China
[2] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Peoples R China
[3] South China Univ Technol, Coll Environm & Energy, New Energy Res Inst, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-O-2; batteries; Oxygen electrode; Carbon fiber; MoP; Quantum dots; FENTON DEGRADATION SYSTEM; SODIUM-ION BATTERIES; HYDROGEN EVOLUTION; TRIBOELECTRIC NANOGENERATOR; HIGH-CAPACITY; ELECTROCATALYST; CATHODE; NANOPARTICLES; CATALYSTS; OXIDE;
D O I
10.1016/j.ensm.2018.07.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient oxygen electrode with excellent electrocatalytic activity and mass transportation efficiency is highly desired for the practical applications of Li-O-2 batteries (LOBs). Here, we report a novel 3D free-standing film oxygen electrode based on N, P-codoped hollow carbon fiber embedded with MoP quantum dots (MoP QD@HCF). The MoP QD@HCF oxygen electrode delivers a higher discharge specific capacity of 6.75 mA h cm(-2), a lower charge voltage of < 3.85 V and an enhanced rate capability (up to 0.4 mA cm(-2)). It is ascribed to that the N, P-codoped hollow carbon fiber with open end serves as mass transfer channels and faciliates the electrons and Li+ ions transportation. DFT calculation results show that MoP is metallic and (100) crystal plane exhibits favorable surface oxygen adsorption, resulting in a superior catalytic activity towards the formation/decomposition of Li2O2. This new electrode architecture opens a promising avenue for LOBs electrode development through optimizing the electrode components and microstructure.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 65 条
[1]   Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge [J].
Adams, Brian D. ;
Radtke, Claudio ;
Black, Robert ;
Trudeau, Michel L. ;
Zaghib, Karim ;
Nazar, Linda F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1772-1778
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]  
Black R., 2013, Angew. Chem. Int. Ed, V125, P410, DOI DOI 10.1002/ANGE201205354
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   Mechanistic insight into the synergetic catalytic effect of Pd and MnO2 for high-performance Li-O2 cells [J].
Cao, Can ;
Lan, Zhenyun ;
Yan, Yucong ;
Cheng, Hao ;
Pan, Bin ;
Xie, Jian ;
Lu, Yunhao ;
Zhang, Hui ;
Zhang, Shichao ;
Cao, Gaoshao ;
Zhao, Xinbing .
ENERGY STORAGE MATERIALS, 2018, 12 :8-16
[6]   An innovative electro-fenton degradation system self-powered by triboelectric nanogenerator using biomass-derived carbon materials as cathode catalyst [J].
Chen, Ye ;
Wang, Miao ;
Tian, Miao ;
Zhu, Yingzheng ;
Wei, Xianjun ;
Jiang, Tao ;
Gao, Shuyan .
NANO ENERGY, 2017, 42 :314-321
[7]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[8]   An advanced electro-Fenton degradation system with triboelectric nanogenerator as electric supply and biomass-derived carbon materials as cathode catalyst [J].
Gao, Shuyan ;
Wang, Miao ;
Chen, Ye ;
Tian, Miao ;
Zhu, Yingzheng ;
Wei, Xianjun ;
Jiang, Tao .
NANO ENERGY, 2018, 45 :21-27
[9]   Raman Spectroscopy in Lithium-Oxygen Battery Systems [J].
Gittleson, Forrest S. ;
Yao, Koffi P. C. ;
Kwabi, David G. ;
Sayed, Sayed Youssef ;
Ryu, Won-Hee ;
Shao-Horn, Yang ;
Taylor, Andre D. .
CHEMELECTROCHEM, 2015, 2 (10) :1446-1457
[10]   Microelectrode Diagnostics of Lithium-Air Batteries [J].
Gunasekara, Iromie ;
Mukerjee, Sanjeev ;
Plichta, Edward J. ;
Hendrickson, Mary A. ;
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A381-A392