On the decomposition of rational functions

被引:5
作者
Ayad, Mohamed [1 ]
Fleischmann, Peter [2 ]
机构
[1] Univ Littoral Math, F-62228 Calais, France
[2] Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England
关键词
rational function decomposition; indecomposable rational function; normal form of a rational function;
D O I
10.1016/j.jsc.2007.10.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let f := p/q epsilon K(x) be a rational function in one variable. By Luroth's theorem, the collection of intermediate fields K(f) subset of L subset of K(x) is in bijection with inequivalent proper decompositions f = g circle h, with g, h epsilon K(x) of degrees >= 2. In [Alonso, Cesar, Gutierrez, Jaime, Recio, Tomas, 1995. A rational function decomposition algorithm by near-separated polynomials. J. Symbolic Comput. 19, 527-544] an algorithm is presented to calculate such a function decomposition. In this paper we describe a simplification of this algorithm, avoiding expensive solutions of linear equations. A MAGMA implementation shows the efficiency of our method. We also prove some indecomposability criteria for rational functions, which were motivated by computational experiments. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:259 / 274
页数:16
相关论文
共 10 条
[1]   A rational function decomposition algorithm by near-separated polynomials [J].
Alonso, C ;
Gutierrez, J ;
Recio, T .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 19 (06) :527-544
[2]  
Ayad M., 2006, COMPLEX VAR ELLIPTIC, V51, P143
[3]   POLYNOMIAL DECOMPOSITION ALGORITHMS [J].
BARTON, DR ;
ZIPPEL, R .
JOURNAL OF SYMBOLIC COMPUTATION, 1985, 1 (02) :159-168
[4]  
CANNON J, 2007, ALGEBRAIC PROGRAMMIN
[5]   On multivariate rational function decomposition [J].
Gutierrez, J ;
Rubio, R ;
Sevilla, D .
JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (05) :545-562
[6]  
KOZEN D, 1990, J SYMB COMPUT, V10, P529
[7]   POLYNOMIAL DECOMPOSITION ALGORITHMS [J].
KOZEN, D ;
LANDAU, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1989, 7 (05) :445-456
[8]  
Schinzel A., 2000, POLYNOMIALS SPECIAL
[9]   HOMOGENEOUS BIVARIATE DECOMPOSITIONS [J].
VONZURGATHEN, J ;
WEISS, J .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 19 (05) :409-434
[10]  
ZIPPEL R, 1991, P ISSAC, V91, P1