Algorithm 809: PREQN: Fortran 77 subroutines for preconditioning the conjugate gradient method

被引:12
作者
Morales, JL
Nocedal, J
机构
[1] Inst Tecnol Autonomo Mexico, Mexico City 01000, DF, Mexico
[2] Northwestern Univ, ECE Dept, Evanston, IL 60208 USA
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2001年 / 27卷 / 01期
关键词
algorithms; preconditioning; conjugate gradient method; quasi-Newtonmethod; Hessian-free Newton method; limited-memory method;
D O I
10.1145/382043.382343
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
PREQN is a package of Fortran 77 subroutines for automatically generating preconditioners for the conjugate gradient method. It is designed for solving a sequence of linear systems A(i)x = bi, i = 1, ..., t, where the coefficient matrices Ai are symmetric and positive definite and vary slowly. Problems of this type arise, for example, in nonlinear optimization. The preconditioners are based on limited-memory quasi-Newton updating and are recommended for problems in which (i) the coefficient matrices are not explicitly known and only matrix-vector products of the form Aiv can be computed; or (ii) the coefficient matrices are not sparse. PREQN is written so that a single call from a conjugate gradient routine performs the preconditioning operation and stores information needed for the generation of a new preconditioner.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 12 条
[1]  
CHAN TF, 1996, 9631 U CAL LOS ANG
[2]  
Dennis, 1996, NUMERICAL METHODS UN
[3]  
Greenbaum A., 1997, SIAM FRONTIERS APPL
[4]   AN IMPROVED INCOMPLETE CHOLESKY FACTORIZATION [J].
JONES, MT ;
PLASSMANN, PE .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :5-17
[5]   Automatic preconditioning by limited memory quasi-Newton updating [J].
Morales, JL ;
Nocedal, J .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) :1079-1096
[6]   NEWTON-TYPE MINIMIZATION VIA THE LANCZOS METHOD [J].
NASH, SG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :770-788
[7]  
NOCEDAL J, 1980, MATH COMPUT, V35, P773, DOI 10.1090/S0025-5718-1980-0572855-7
[8]   A DISCRETE NEWTON ALGORITHM FOR MINIMIZING A FUNCTION OF MANY VARIABLES [J].
OLEARY, DP .
MATHEMATICAL PROGRAMMING, 1982, 23 (01) :20-33
[9]  
ORTEGA J., 1970, ITERATIVE SOLUTION N