Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology

被引:130
作者
Richardson, Justin A. [1 ]
Webster, Eric A. G. [2 ]
Grant, Lindsay A. [3 ]
Henderson, Robert K. [2 ]
机构
[1] Dialog Semicond UK Ltd, Multrees Walk, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Sch Elect & Elect Engn, Inst Integrated Micro & Nano Syst, Edinburgh EH9 3JL, Midlothian, Scotland
[3] ST Microelect Imaging Div, Edinburgh EH12 7BF, Midlothian, Scotland
关键词
Biomedical imaging; complementary metal-oxide-semiconductor (CMOS) integrated circuits; image sensors; photodetectors; photodiodes; p-n junctions; DETECTOR;
D O I
10.1109/TED.2011.2141138
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Single-photon avalanche photodiodes (SPADs) operating in Geiger mode offer exceptional time resolution and optical sensitivity. Implementation in modern nanometer-scale complementary metal-oxide-semiconductor (CMOS) technologies to create dense high-resolution arrays requires a device structure that is scaleable down to a few micrometers. A family of three SPAD structures with sub-100-Hz mean dark count rate (DCR) is proposed in 130-nm CMOS image sensor technology. Based on a novel retrograde buried n-well guard ring, these detectors are shown to readily scale from 32 to 2 mu m with improving DCR, jitter, and yield. One of these detectors is compatible with standard triple-well digital CMOS, and the others bring the first low-DCR realizations at the 130-nm node of shallow-trench-isolation-bounded and enhancement SPADs.
引用
收藏
页码:2028 / 2035
页数:8
相关论文
共 31 条
[1]  
Carrara Lucio, 2009, 2009 IEEE International Solid-State Circuits Conference (ISSCC 2009), P40, DOI 10.1109/ISSCC.2009.4977297
[2]   A flexible compact readout circuit for SPAD arrays [J].
Chitnis, Danial ;
Collins, Steve .
DETECTORS AND IMAGING DEVICES: INFRARED, FOCAL PLANE, SINGLE PHOTON, 2010, 7780
[3]  
Cohen M, 2006, INT EL DEVICES MEET, P812
[4]   Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits [J].
Donati, Silvano ;
Martini, Giuseppe ;
Norgia, Michele .
OPTICS EXPRESS, 2007, 15 (26) :18066-18075
[5]   Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology [J].
Faramarzpour, Naser ;
Deen, M. Jarnal ;
Shirani, Shahram ;
Fang, Qiyin .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (03) :760-767
[6]   STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology [J].
Finkelstein, Hod ;
Hsu, Mark J. ;
Esener, Sadik C. .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (11) :887-889
[7]   The Digital Silicon Photomultiplier - Principle of Operation and Intrinsic Detector Performance [J].
Frach, Thomas ;
Prescher, Gordian ;
Degenhardt, Carsten ;
de Gruyter, Rik ;
Schmitz, Anja ;
Ballizany, Rob .
2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, :1959-1965
[8]   A low-noise single-photon detector implemented in a 130 nm CMOS imaging process [J].
Gersbach, Marek ;
Richardson, Justin ;
Mazaleyrat, Eric ;
Hardillier, Stephane ;
Niclass, Cristiano ;
Henderson, Robert ;
Grant, Lindsay ;
Charbon, Edoardo .
SOLID-STATE ELECTRONICS, 2009, 53 (07) :803-808
[9]   NEW SILICON EPITAXIAL AVALANCHE-DIODE FOR SINGLE-PHOTON TIMING AT ROOM-TEMPERATURE [J].
GHIONI, M ;
COVA, S ;
LACAITA, A ;
RIPAMONTI, G .
ELECTRONICS LETTERS, 1988, 24 (24) :1476-1477
[10]   Progress in silicon single-photon avalanche diodes [J].
Ghioni, Massimo ;
Gulinatti, Angelo ;
Rech, Ivan ;
Zappa, Franco ;
Cova, Sergio .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2007, 13 (04) :852-862