SU(N) fractional quantum Hall effect in topological flat bands

被引:15
作者
Zeng, Tian-Sheng [1 ,2 ]
Sheng, D. N. [2 ]
机构
[1] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
[2] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
基金
美国国家科学基金会;
关键词
STATES; SPIN; HIERARCHY; GRAPHENE; FLUID; EXCITATIONS;
D O I
10.1103/PhysRevB.97.035151
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study N-component interacting particles (hardcore bosons and fermions) loaded in topological lattice models with SU(N)-invariant interactions based on exact diagonalization and density matrix renormalization group method. By tuning the interplay of interspecies and intraspecies interactions, we demonstrate that a class of SU(N) fractional quantum Hall states can emerge at fractional filling factors nu = N/(N + 1) for bosons [nu = N/(2N + 1) for fermions] in the lowestChern band, characterized by the nontrivial fractional Hall responses and the fractional charge pumping. Moreover, we establish a topological characterization based on the K matrix and discuss the close relationship to the fractional quantum Hall physics in topological flat bands with Chern number N.
引用
收藏
页数:9
相关论文
共 70 条
  • [1] Fractional and integer quantum Hall effects in the zeroth Landau level in graphene
    Abanin, Dmitry A.
    Feldman, Benjamin E.
    Yacoby, Amir
    Halperin, Bertrand I.
    [J]. PHYSICAL REVIEW B, 2013, 88 (11):
  • [2] Separation of spin and charge in paired spin-singlet quantum Hall states
    Ardonne, E
    van Lankvelt, FJM
    Ludwig, AWW
    Schoutens, K
    [J]. PHYSICAL REVIEW B, 2002, 65 (04): : 1 - 4
  • [3] New class of non-Abelian spin-singlet quantum Hall states
    Ardonne, E
    Schoutens, K
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (25) : 5096 - 5099
  • [4] SINGLET QUANTUM HALL-EFFECT AND CHERN-SIMONS THEORIES
    BALATSKY, A
    FRADKIN, E
    [J]. PHYSICAL REVIEW B, 1991, 43 (13): : 10622 - 10634
  • [5] Phase diagram of fractional quantum Hall effect of composite fermions in multicomponent systems
    Balram, Ajit C.
    Toke, Csaba
    Wojs, A.
    Jain, J. K.
    [J]. PHYSICAL REVIEW B, 2015, 91 (04)
  • [6] Topological Nematic States and Non-Abelian Lattice Dislocations
    Barkeshli, Maissam
    Qi, Xiao-Liang
    [J]. PHYSICAL REVIEW X, 2012, 2 (03):
  • [7] TOPOLOGICAL FLAT BAND MODELS AND FRACTIONAL CHERN INSULATORS
    Bergholtz, Emil J.
    Liu, Zhao
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (24):
  • [8] EFFECTIVE THEORIES OF THE FRACTIONAL QUANTUM HALL-EFFECT AT GENERIC FILLING FRACTIONS
    BLOK, B
    WEN, XG
    [J]. PHYSICAL REVIEW B, 1990, 42 (13): : 8133 - 8144
  • [9] STRUCTURE OF THE MICROSCOPIC THEORY OF THE HIERARCHICAL FRACTIONAL QUANTUM HALL-EFFECT
    BLOK, B
    WEN, XG
    [J]. PHYSICAL REVIEW B, 1991, 43 (10): : 8337 - 8349
  • [10] Observation of the fractional quantum Hall effect in graphene
    Bolotin, Kirill I.
    Ghahari, Fereshte
    Shulman, Michael D.
    Stormer, Horst L.
    Kim, Philip
    [J]. NATURE, 2009, 462 (7270) : 196 - 199