SARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results

被引:3
|
作者
Leiner, Johannes [1 ,2 ]
Pellissier, Vincent [1 ,2 ]
Nitsche, Anne [1 ,2 ]
Koenig, Sebastian [1 ,2 ]
Hohenstein, Sven [1 ,2 ]
Nachtigall, Irit [3 ]
Hindricks, Gerhard [1 ,2 ]
Kutschker, Christoph [4 ]
Rolinski, Boris [5 ]
Gebauer, Julian [5 ]
Prantz, Anja [5 ]
Schubert, Joerg [6 ]
Patzschke, Joerg [7 ]
Bollmann, Andreas [1 ,2 ]
Wolz, Martin [8 ]
机构
[1] Leipzig Heart Inst, Leipzig, Germany
[2] Univ Leipzig, Heart Ctr Leipzig, Dept Electrophysiol, Leipzig, Germany
[3] Helios Hosp Emil von Behring, Berlin, Germany
[4] Elblandkliniken, Dept Hyg Med, Radebeul, Germany
[5] Elblandkliniken, Dept Lab Med, Radebeul, Germany
[6] Elblandklinikum Riesa, Dept Infernal Med, Riesa, Germany
[7] Elblandklinikum Meissen, Dept Internal Med, Meissen, Germany
[8] Elblandklinikum Meissen, Dept Neurol & Geriatr, Meissen, Germany
关键词
SARS-CoV-2; COVID-19; rapid antigen test; false negative; prediction models; healthcare; DIAGNOSTIC PERFORMANCE; COVID-19;
D O I
10.1016/j.ijid.2021.09.008
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Objectives: SARS-CoV-2 rapid antigen tests (RAT) provide fast identification of infectious patients when RT-PCR results are not immediately available. We aimed to develop a prediction model for identification of false negative (FN) RAT results. Methods: In this multicenter trial, patients with documented paired results of RAT and RT-PCR between October 1 st 2020 and January 31 st 2021 were retrospectively analyzed regarding clinical findings. Variables included demographics, laboratory values and specific symptoms. Three different models were evaluated using Bayesian logistic regression. Results: The initial dataset contained 4,076 patients. Overall sensitivity and specificity of RAT was 62.3% and 97.6%. 2,997 cases with negative RAT results (FN: 120; true negative: 2,877; reference: RT-PCR) underwent further evaluation after removal of cases with missing data. The best-performing model for predicting FN RAT results containing 10 variables yielded an area under the curve of 0.971. Sensitivity, specificity, PPV and NPV for 0.09 as cut-off value (probability for FN RAT) were 0.85, 0.99, 0.7 and 0.99. Conclusion: FN RAT results can be accurately identified through ten routinely available variables. Implementation of a prediction model in addition to RAT testing in clinical care can provide decision guidance for initiating appropriate hygiene measures and therefore helps avoiding nosocomial infections. (c) 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页码:117 / 123
页数:7
相关论文
共 50 条
  • [31] False-positive results in SARS-CoV-2 antigen test with rhinovirus-A infection
    Otake, Shogo
    Miyamoto, Sonoko
    Mori, Ai
    Iwamoto, Tomotada
    Kasai, Masashi
    PEDIATRICS INTERNATIONAL, 2021, 63 (09) : 1135 - 1137
  • [32] Update on rapid diagnostic testing for SARS-CoV-2
    Dugerdil, Adeline
    Flahault, Antoine
    ANAESTHESIA CRITICAL CARE & PAIN MEDICINE, 2022, 41 (04)
  • [33] Rapid antigen test for SARS-CoV-2: results of validation and use in real life
    Kosnik, Irena Grmek
    Dermota, Urska
    Golle, Andrej
    Cretnik, Tjasa Zohar
    FUTURE VIROLOGY, 2022, 17 (12) : 883 - 888
  • [34] Clinical evaluation of rapid point-of-care antigen tests for diagnosis of SARS-CoV-2 infection
    Johannes G. M. Koeleman
    Henk Brand
    Stijn J. de Man
    David S. Y. Ong
    European Journal of Clinical Microbiology & Infectious Diseases, 2021, 40 : 1975 - 1981
  • [35] Clinical evaluation of rapid point-of-care antigen tests for diagnosis of SARS-CoV-2 infection
    Koeleman, Johannes G. M.
    Brand, Henk
    de Man, Stijn J.
    Ong, David S. Y.
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2021, 40 (09) : 1975 - 1981
  • [36] Performance of a rapid antigen test for SARS-CoV-2 in Kenya
    Onsongo, Simon N.
    Otieno, Kephas
    van Duijn, Shannen
    Adams, Emily
    Omollo, Mervis
    Odero, Isdora A.
    K'Oloob, Alloys
    Houben, Nathalie
    Milimo, Emmanuel
    Aroka, Robert
    Barsosio, Hellen C.
    Oluoch, Fredrick
    Odhiambo, Albert
    Kariuki, Simon
    de Wit, Tobias F. Rinke
    DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2022, 102 (02)
  • [37] Rapid Antigen Assays for SARS-CoV-2: Promise and Peril
    Truong, Thao T.
    Bard, Jennifer Dien
    Butler-Wu, Susan M.
    CLINICS IN LABORATORY MEDICINE, 2022, 42 (02) : 203 - 222
  • [38] Comparison of Manual versus Automated SARS-CoV-2 Rapid Antigen Testing in Asymptomatic Individuals
    Harris, David T.
    Ingraham, Nicole
    Badowski, Michael
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (22)
  • [39] SARS-CoV-2 Rapid Antigen Testing of Symptomatic and Asymptomatic Individuals on the University of Arizona Campus
    Harris, David T.
    Badowski, Michael
    Jernigan, Brandon
    Sprissler, Ryan
    Edwards, Taylor
    Cohen, Randall
    Paul, Stephen
    Merchant, Nirav
    Weinkauf, Craig C.
    Bime, Christian
    Erickson, Heidi E.
    Bixby, Billie
    Parthasarathy, Sairam
    Chaudhary, Sachin
    Natt, Bhupinder
    Cristan, Elaine
    El Aini, Tammer
    Rischard, Franz
    Campion, Janet
    Chopra, Madhav
    Insel, Michael
    Sam, Afshin
    Knepler, James L.
    Knox, Kenneth
    Mosier, Jarrod
    Spier, Catherine
    Dake, Michael D.
    BIOMEDICINES, 2021, 9 (05)
  • [40] Rapid antigen testing as a reactive response to surges in nosocomial SARS-CoV-2 outbreak risk
    Smith, David R. M.
    Duval, Audrey
    Zahar, Jean Ralph
    Opatowski, Lulla
    Temime, Laura
    NATURE COMMUNICATIONS, 2022, 13 (01)