Multiple Comparisons in Microarray Data Analysis

被引:0
作者
Zhang, Donghui [1 ]
Liu, Li [1 ]
机构
[1] Sanofi Aventis, Biostat & Programming, Bridgewater, NJ 08807 USA
来源
STATISTICS IN BIOPHARMACEUTICAL RESEARCH | 2010年 / 2卷 / 03期
关键词
False discovery rate; Family-wise error rate; Multiple testing; FALSE DISCOVERY RATE; BREAST-CANCER; EXPRESSION; TESTS; CLASSIFICATION; GENES; RATES;
D O I
10.1198/sbr.2009.08086
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiplicity is a challenging statistical issue in drug discovery, and a particular example is microarray study. The traditional approach of controlling of the family-wise error rate (FWER) is conservative when the number of tests is large. A more appropriate approach is to control the false discovery rate (FDR). Since the development of the Benjamini and Hochberg (BH) FDR procedure in 1995, many modifications have been proposed aimed at relaxing the requirement for independent test statistics or improving the power of the BH FDR procedure. Comparisons of these procedures in the current literature are not comprehensive and the conclusions on performances are inconsistent. The objectives of this article are three-fold: (a) to perform a more comprehensive comparison of extant multiple testing procedures using two real microarray datasets and various simulated data sets; (b) to explore potential reasons for the inconsistencies in published simulation results; and (c) to identify suitable FDR procedures under different scenarios according to covariance structure, percent of true null hypotheses among multiple tests, and sample size.
引用
收藏
页码:368 / 382
页数:15
相关论文
共 26 条
  • [1] A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence
    Benjamini, Y
    Liu, W
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 82 (1-2) : 163 - 170
  • [2] Benjamini Y, 2001, ANN STAT, V29, P1165
  • [3] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [4] BENJAMINI Y, 1999, 993 TEL AV U DEP STA
  • [5] Adaptive linear step-up procedures that control the false discovery rate
    Benjamini, Yoav
    Krieger, Abba M.
    Yekutieli, Daniel
    [J]. BIOMETRIKA, 2006, 93 (03) : 491 - 507
  • [6] Partitioning to Uncover Conditions for Permutation Tests to Control Multiple Testing Error Rates
    Calian, Violeta
    Li, Dongmei
    Hsu, Jason C.
    [J]. BIOMETRICAL JOURNAL, 2008, 50 (05) : 756 - 766
  • [7] Multiple hypothesis testing in microarray experiments
    Dudoit, S
    Shaffer, JP
    Boldrick, JC
    [J]. STATISTICAL SCIENCE, 2003, 18 (01) : 71 - 103
  • [8] Comparison of discrimination methods for the classification of tumors using gene expression data
    Dudoit, S
    Fridlyand, J
    Speed, TP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 77 - 87
  • [9] Empirical Bayes analysis of a microarray experiment
    Efron, B
    Tibshirani, R
    Storey, JD
    Tusher, V
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1151 - 1160
  • [10] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537