Thermal properties of the one-dimensional space quantum fractional Dirac Oscillator

被引:9
作者
Korichi, Nabil [1 ]
Boumali, Abdelmalek [1 ]
Hassanabadi, Hassan [2 ]
机构
[1] Univ Larbi Tebessi, Lab Phys Appliquee & Theor, Tebessa, Algeria
[2] Shahrood Univ Technol, Fac Phys, POB 3619995161-316, Shahrood, Iran
关键词
Fractional formalism; Dirac oscillator; Fractional Harmonic oscillator; Semi-classical approximation; SCHRODINGER-EQUATION; MECHANICS;
D O I
10.1016/j.physa.2021.126508
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the fractional version of the one-dimensional relativistic oscillators. We apply some important definitions and properties of a new kind of fractional formalism on the Dirac oscillator (DO). By using a semiclassical approximation, the energy eigenvalues have been determined for the oscillator. The obtained results show a remarkable influence of the fractional parameter on the energy eigenvalues. By considering a unique energy spectrum, we present a simple numerical computation of the thermal properties of a defined energy spectrum of a system. the Euler- Maclaurin formula has been used to calculate the partition function and therefore the associated thermodynamics quantities. In addition, the eigensolutions of the fractional Dirac oscillator, based on the factorization method, have been determined. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 64 条
[1]   Collocation method for fractional quantum mechanics [J].
Amore, Paolo ;
Fernandez, Francisco M. ;
Hofmann, Christoph P. ;
Saenz, Ricardo A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
[2]  
Andrews G. E., 2001, SPECIAL FUNCTIONS
[3]  
[Anonymous], 2014, INTRO PHYS
[4]  
[Anonymous], 1995, Ten Physical Applications of Spectral Zeta Functions
[5]  
Atman KG, 2020, REP MATH PHYS, V86, P263
[6]  
Bandrowski B, 2010, Computational Methods in Science and Technology, V16, P191
[7]   On the consistency of the solutions of the space fractional Schroumldinger equation (vol 53, 042105, 2012) [J].
Bayin, Selcuk S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
[8]   On the consistency of the solutions of the space fractional Schrodinger equation [J].
Bayin, Selcuk S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
[9]  
BENITEZ J, 1990, PHYS REV LETT, V64, P1643, DOI 10.1103/PhysRevLett.64.1643
[10]  
Bjorken J. D., 1964, RELATIVISTIC QUANTUM