Minimum time function of a non-autonomous control system

被引:0
|
作者
Pogodaev, Nikolay I. [1 ]
Voronov, Vsevolod A. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Matrosov Inst Syst Dynam & Control Theory, Irkutsk, Russia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 32期
基金
俄罗斯基础研究基金会;
关键词
Minimum time function; Non-autonomous system; Fast Marching Method; First order PDE; REGULARITY; BOUNDARY;
D O I
10.1016/j.ifacol.2018.11.508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a time-dependent control system we consider a "reversed" minimum time problem, which consists in finding the minimum time needed by the system, whose state is initially located in a given set, to reach a given point. We show that the minimum time function constructed in this way is a unique viscosity solution of a static first order PDE, provided that, at every point of the extended phase space, admissible velocities form a convex set containing zero in the interior. We also describe a version of the Fast Marching Method (FMM) that effectively solves this PDE. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:704 / 707
页数:4
相关论文
共 50 条
  • [31] Existence and regularity of time-dependent pullback attractors for the non-autonomous nonclassical diffusion equations
    Qin, Yuming
    Yang, Bin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (06) : 1533 - 1550
  • [32] Adaptive coupled synchronization of non-autonomous systems in ring networks
    过榴晓
    徐振源
    胡满峰
    Chinese Physics B, 2008, 17 (03) : 836 - 841
  • [33] Furstenberg family and multi-transitivity in non-autonomous systems
    Renukadevi, V
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (08) : 1087 - 1102
  • [34] Singular non-autonomous (p, q)-equations with competing nonlinearities
    Papageorgiou, Nikolaos S.
    Qin, Dongdong
    Radulescu, Vicentiu D.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
  • [35] PULLBACK ATTRACTORS FOR A CLASS OF NON-AUTONOMOUS THERMOELASTIC PLATE SYSTEMS
    Bezerra, Flank D. M.
    Carbone, Vera L.
    Nascimento, Marcelo J. D.
    Schiabel, Karina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3553 - 3571
  • [36] PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE PARABOLIC EQUATION
    Li, Xin
    Sun, Chunyou
    Zhou, Feng
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (02) : 511 - 528
  • [37] NON-AUTONOMOUS ORNSTEIN-UHLENBECK EQUATIONS IN EXTERIOR DOMAINS
    Hansel, Tobias
    Rhandi, Ahdelaziz
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (3-4) : 201 - 220
  • [38] STRUCTURE OF THE PULLBACK ATTRACTOR FOR A NON-AUTONOMOUS SCALAR DIFFERENTIAL INCLUSION
    Caraballo, T.
    Langa, J. A.
    Valero, J.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (04): : 979 - 994
  • [39] Non-autonomous fractional Cauchy problems with almost sectorial operators
    He, Jia Wei
    Zhou, Yong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191
  • [40] Periodic solutions to non-autonomous second-order systems
    Wang, Haiyan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) : 1271 - 1275